Abstract:
Disclosed is a building board construction with increased surface strength. More specifically, increased nail pull strength is achieved via the application of an external surface coating. The surface coating is ideally applied to a paper faced gypsum building board. In one possible embodiment, the coating is formed from a water soluble polymer.
Abstract:
The invention provides novel aerated composite materials that possess excellent physical and performance characteristics of aerated concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.
Abstract:
A gypsum board comprises a cover sheet and a gypsum layer disposed on the cover sheet. The gypsum layer comprises the reaction product of an isocyanate, water, and stucco. The isocyanate increases the moisture resistance of the gypsum board. A method of manufacturing the gypsum board comprises the steps of combining the isocyanate, the water, and the stucco to form a slurry, and applying the slurry to a cover sheet to form the gypsum layer on the cover sheet.
Abstract:
Disclosed are cementitious product, as well as cementitious slurry, and method of forming the product. To reduce density in the cementitious product, foam is included in the slurry and in the method of forming the product. The slurry includes cementitious particles, water, and air bubbles such as from compressed air. Instead of using detergent chemistry at the gas/water interface of bubbles, the present invention uses a surface modifying agent for the cementitious particles in the slurry. The modified particles act to produce stable foam in the slurry. As an example mode of introduction, the surface modifier can be added (e.g., as solid or solution) directly into a bulk cementitious slurry that forms the product. As another example, the surface modifier can be added in a separate solution with water, air bubbles, and cementitious particles that serve as additive to the main cementitious slurry, where the separate solution is then added to the main cementitious slurry.
Abstract:
Methods directed to a producing precast pervious concrete panels. Each pervious concrete panel has a plurality of layers of concrete mixture, wherein the aggregate used in each layer may be a different size and each layer is compacted after being laid. The method may further include providing a slip-former machine or an extruder machine to lay the layers of pervious concrete mixture.
Abstract:
The present invention provides a composite wall panel with good thermal insulation and sufficient strength for structural use which is designed for the fabrication of energy efficient building. The composite wall panel of the present invention comprises a foamed concrete core with sufficient compressive strength and low thermal conductivity which is sandwiched between two lightweight ductile fiber reinforced cementitious composite (FRCC) protective layers with low thermal conductivity, good barrier resistance to moisture/chloride ion/gas, multiple cracking as well as certain amount of steel reinforcements. These composite wall panels are useful in a variety of buildings in both cold and hot regions.
Abstract:
A slurry for manufacturing gypsum board comprises calcined gypsum, water, a foaming agent, and a coalescing agent. The foaming agent imparts a plurality of bubbles in the slurry. Typically, a foam is pre-generated with the foaming agent and the foam is used to form the slurry such that the foam imparts the plurality of bubbles in the slurry. The coalescing agent coalesces the plurality of bubbles imparted by the foam. Typically, the coalescing agent coalesces a plurality of small and partially joined bubbles imparted by the foam to create larger and more discrete bubbles. A gypsum board and method of forming the slurry and the gypsum board are also disclosed. The gypsum board comprises a gypsum layer formed from the slurry. The gypsum layer defines a plurality of bubbles dispersed therein, which are imparted by the foam and coalescing agent of the slurry.
Abstract:
A slurry for manufacturing gypsum board comprises calcined gypsum, water, a foaming agent, and a coalescing agent. The foaming agent imparts a plurality of bubbles in the slurry. Typically, a foam is pre-generated with the foaming agent and the foam is used to form the slurry such that the foam imparts the plurality of bubbles in the slurry. The coalescing agent coalesces the plurality of bubbles imparted by the foam. Typically, the coalescing agent coalesces a plurality of small and partially joined bubbles imparted by the foam to create larger and more discrete bubbles. A gypsum board and method of forming the slurry and the gypsum board are also disclosed. The gypsum board comprises a gypsum layer formed from the slurry. The gypsum layer defines a plurality of bubbles dispersed therein, which are imparted by the foam and coalescing agent of the slurry.
Abstract:
Disclosed herein are low density fiber cement articles, such as fiber cement building panels and sheets, comprised of multiple overlaying fiber cement substrate layers having small and uniform entrained air pockets and low density fillers distributed throughout. The combination of entrained air pockets and low density fillers provide a low density fiber cement matrix with physical and mechanical properties similar to comparable low density fiber cement matrix without entrained air pockets.
Abstract:
A reduced weight, reduced density gypsum panel that includes high expansion vermiculite with fire resistance capabilities that are at least comparable to (if not better than) commercial fire rated gypsum panels with a much greater gypsum content, weight and density.