摘要:
A method for producing an olefin stream is provided based on conversion of an initial natural gas stream into a synthesis gas. The resulting synthesis gas is enriched with CO2 previously separated from the natural gas stream. The synthesis gas is then used to form a methanol composition, which can then be used as feedstock for a methanol-to-olefin conversion reaction.
摘要:
This invention is directed to methods for forming an olefin stream from a methanol stream. A lower grade methanol, such as chemical grade or crude methanol, can be used as feed to form the olefin stream. The process uses a relatively simple distillation type step to vaporize a portion of the methanol feed stream and send the resulting vapor stream to a reaction unit to form the olefin stream. In addition, the invention provides the ability to operate the downstream recovery units with reduced fouling or plugging due to the presence of fine solids components.
摘要:
The invention relates to a process for converting an oxygenate feedstock into an olefin product stream comprising (a) contacting an oxygenate feedstock with a molecular sieve catalyst in a reactor under conditions effective to convert the feedstock into an olefin product stream and to form carbonaceous deposits on the catalyst; (b) contacting at least a portion of the catalyst having said carbonaceous deposits with an oxygen containing gas under conditions effective to obtain a regenerated catalyst having a reduced carbonaceous deposit level and having an increased molecular oxygen content; (c) removing at least 60% by volume of said molecular oxygen from the regenerated catalyst based upon the total volume of molecular oxygen; (d) returning said regenerated catalyst to said reactor; and (e) repeating steps (a)-(d).
摘要:
The present invention is a process for cleaning and using byproduct water from an oxygenate to olefin process to satisfy the water requirement of the oxygenate to olefin process.
摘要:
A process is provided for converting oxygenate to olefins from a fluidized bed reactor which comprises removal of catalyst fines from a quenched vaporous effluent by contacting with a liquid low in catalyst fines content, e.g., oxygenate feedstock, or by-product water from the oxygenates to olefins conversion which is stripped and/or filtered. The process typically comprises: contacting a feedstock comprising oxygenate with a catalyst comprising a molecular sieve under conditions effective to produce a deactivated catalyst having carbonaceous deposits and a product comprising the olefins; separating the deactivated catalyst from the product to provide a separated vaporous product which contains catalyst fines; quenching the separated vaporous product with a liquid medium containing water and catalyst fines, in an amount sufficient for forming a light product fraction comprising light olefins and catalyst fines and a heavy product fraction comprising water, heavier hydrocarbons and catalyst fines; treating the light product fraction by contacting with a liquid substantially free of catalyst fines to provide a light product fraction having reduced catalyst fines content and a liquid fraction of increased fines content; compressing the light product fraction having reduced catalyst fines content; and recovering the light olefins from the compressed light product fraction.
摘要:
The invention relates to a conversion process for making olefin(s) using a molecular sieve catalyst composition. More specifically, the invention is directed to a process for converting a feedstock comprising an oxygenate in the presence of a molecular sieve catalyst composition, wherein the feedstock is free of or substantially free of metal salts.
摘要:
A process is provided for converting oxygenate to olefins from a fluidized bed reactor which comprises removal of catalyst fines from a quenched vaporous effluent by contacting with a liquid low in catalyst fines content, e.g., oxygenate feedstock, or by-product water from the oxygenates to olefins conversion which is stripped and/or filtered. The process typically comprises: contacting a feedstock comprising oxygenate with a catalyst comprising a molecular sieve under conditions effective to produce a deactivated catalyst having carbonaceous deposits and a product comprising the olefins; separating the deactivated catalyst from the product to provide a separated vaporous product which contains catalyst fines; quenching the separated vaporous product with a liquid medium containing water and catalyst fines, in an amount sufficient for forming a light product fraction comprising light olefins and catalyst fines and a heavy product fraction comprising water, heavier hydrocarbons and catalyst fines; treating the light product fraction by contacting with a liquid substantially free of catalyst fines to provide a light product fraction having reduced catalyst fines content and a liquid fraction of increased fines content; compressing the light product fraction having reduced catalyst fines content; and recovering the light olefins from the compressed light product fraction.
摘要:
This invention is directed to processes (i.e., methods) for making methanol compositions, and to processes (i.e., methods) of using the methanol compositions. The methanol compositions contain ethanol and are particularly suitable for contacting with an olefin forming catalyst to form an olefin stream.
摘要:
A process is disclosed for selectively removing isobutene and butadiene from a stream, the process comprising contacting the stream with a hydrogenation catalyst to hydrogenate butadiene and an oligomerization catalyst to oligomerize isobutene.
摘要:
The present invention provides an integrated system for producing ethylene and propylene from an oxygenate to olefin (OTO) reaction system and a steam cracking system. In a preferred embodiment, at least a portion of an effluent stream from a steam cracking furnace is combined with at least a portion of an effluent stream from an OTO reaction system. Preferably the combined effluent stream is processed by one or more quench units, compression units, and/or fractionation columns. By integrating a steam cracking system with an OTO reaction system, equipment count can be reduced at a significant commercial savings. Compressor efficiency per pound of ethylene and propylene can also be advantageously increased over conventional steam cracking systems. Moreover, the amount of pollutants produced per pound of ethylene and propylene produced can be significantly reduced over the amount of pollutants produced per pound of ethylene and propylene produced in a steam cracking system.