Abstract:
An acid gas purification system is described herein that includes a primary membrane system with a CO2- and H2S-enriched permeate stream effluent and a hydrocarbon stream effluent; a first compression stage arranged to receive the CO2- and H2S-enriched permeate stream and produce a compressed stream; and a cryogenic separation system to receive the compressed stream, the cryogenic separation system including a cooler followed by a fractionator, wherein the fractionator produces a CO2- and H2S liquid stream and a hydrocarbon gas stream.
Abstract:
A process and system for recovering natural gas liquids (NGL) using a combination of J-T cooling and membrane separation. The process involves compressing, separating, and cooling a flare gas stream comprising at least methane and C3+ hydrocarbons prior to being introduced to a J-T valve. The cooled stream exiting the J-T valve is further separated, producing a NGL product stream and an uncondensed gas stream. The uncondensed gas stream is directed to a membrane separation step, which results in a C3+ hydrocarbon enriched stream and a C3+ hydrocarbon depleted stream. The C3+ hydrocarbon enriched stream may be recycled back to the process to recover more NGL.
Abstract:
A method comprises separating a hydrocarbon feed stream having carbon dioxide into a heavy hydrocarbon stream and a light hydrocarbon stream. The light hydrocarbon stream is separated into a carbon dioxide-rich stream and a carbon dioxide-lean stream. At least a portion of the carbon dioxide-lean stream is fed to a hydrocarbon sweetening process. Another method comprises receiving a hydrocarbon feed stream that comprises 30 molar percent to 80 molar percent carbon dioxide. A heavy hydrocarbon stream is separated from the hydrocarbon feed stream, wherein the heavy hydrocarbon stream comprises at least 90 molar percent C3+ hydrocarbons. A carbon dioxide-rich stream is separated from the hydrocarbon feed stream, wherein the carbon dioxide-rich stream comprises at least 95 molar percent carbon dioxide.
Abstract:
A method of separating or concentrating hydrocarbon-containing gas mixtures such as hydrogen from hydrocarbons, carbon dioxide from hydrocarbons, nitrogen from hydrocarbons, and hydrocarbons from one another using a selectively permeable membrane. The method is well suited to separate hydrocarbon-containing mixtures such as those generated by petroleum refining industries, petrochemical industries, natural gas processing, and the like. The membranes exhibit extremely good resistance to plasticization by hydrocarbon components in the gas mixture under practical industrial process conditions.
Abstract:
A process for recovering hydrogen from a cracking effluent wherein a cracking effluent is compressed, and then at least a portion of the hydrogen is separated from the cracking effluent prior to cooling of the cracking effluent to remove lower-boiling components. The separation of hydrogen is preferably accomplished by passing the cracking effluent through at least one semi-permeable membrane.
Abstract:
A process comprising receiving a hydrocarbon feed stream comprising carbon dioxide, separating the hydrocarbon feed stream into a light hydrocarbon stream and a heavy hydrocarbon stream, separating the light hydrocarbon stream into a carbon dioxide-rich stream and a carbon dioxide-lean stream, and feeding the carbon dioxide-lean stream into a hydrocarbon sweetening process, thereby increasing the processing capacity of the hydrocarbon sweetening process compared to the processing capacity of the hydrocarbon sweetening process when fed the hydrocarbon feed stream. Included is an apparatus comprising a first separation unit that receives a hydrocarbon feed stream containing carbon dioxide and produces a heavy hydrocarbon stream and a light hydrocarbon stream, and a second separation unit that receives the light hydrocarbon stream and produces a carbon dioxide-rich stream and a carbon dioxide-lean stream, wherein the apparatus is configured to feed the carbon dioxide-lean stream to a physical solvent, membrane, or carbon dioxide recovery process.
Abstract:
A process comprising receiving a hydrocarbon feed stream comprising carbon dioxide, separating the hydrocarbon feed stream into a light hydrocarbon stream and a heavy hydrocarbon stream, separating the light hydrocarbon stream into a carbon dioxide-rich stream and a carbon dioxide-lean stream, and feeding the carbon dioxide-lean stream into a hydrocarbon sweetening process, thereby increasing the processing capacity of the hydrocarbon sweetening process compared to the processing capacity of the hydrocarbon sweetening process when fed the hydrocarbon feed stream. Included is an apparatus comprising a first separation unit that receives a hydrocarbon feed stream containing carbon dioxide and produces a heavy hydrocarbon stream and a light hydrocarbon stream, and a second separation unit that receives the light hydrocarbon stream and produces a carbon dioxide-rich stream and a carbon dioxide-lean stream, wherein the apparatus is configured to feed the carbon dioxide-lean stream to a physical solvent, membrane, or carbon dioxide recovery process.
Abstract:
A process comprising receiving a hydrocarbon feed stream comprising carbon dioxide, separating the hydrocarbon feed stream into a light hydrocarbon stream and a heavy hydrocarbon stream, separating the light hydrocarbon stream into a carbon dioxide-rich stream and a carbon dioxide-lean stream, and feeding the carbon dioxide-lean stream into a hydrocarbon sweetening process, thereby increasing the processing capacity of the hydrocarbon sweetening process compared to the processing capacity of the hydrocarbon sweetening process when fed the hydrocarbon feed stream. Included is an apparatus comprising a first separation unit that receives a hydrocarbon feed stream containing carbon dioxide and produces a heavy hydrocarbon stream and a light hydrocarbon stream, and a second separation unit that receives the light hydrocarbon stream and produces a carbon dioxide-rich stream and a carbon dioxide-lean stream, wherein the apparatus is configured to feed the carbon dioxide-lean stream to a physical solvent, membrane, or carbon dioxide recovery process.
Abstract:
A method of separating or concentrating hydrocarbon-containing gas mixtures such as hydrogen from hydrocarbons, carbon dioxide from hydrocarbons, nitrogen from hydrocarbons, and hydrocarbons from one another using a selectively permeable membrane. The method is well suited to separate hydrocarbon-containing mixtures such as those generated by petroleum refining industries, petrochemical industries, natural gas processing, and the like. The membranes exhibit extremely good resistance to plasticization by hydrocarbon components in the gas mixture under practical industrial process conditions.
Abstract:
Improved composite semipermeable membranes including microporous carbonaceous adsorptive material supported by a porous substrate for use in separating multicomponent gas mixtures in which certain components in the mixture adsorb within the pores of the adsorptive material and diffuse by surface flow through the membrane to yield a permeate stream enriched in these components. Methods for making the improved composite membranes are described including one or more oxidation steps which increase the membrane permeability and selectivity.