摘要:
Methods of expanding tumor infiltrating lymphocytes (TILs), including peripheral blood lymphocytes (PBLs) and marrow infiltrating lymphocytes (MILs), from blood and/or bone marrow of patients with hematological malignancies, such as liquid tumors, including lymphomas and leukemias, and genetic modifications of expanded TILs, PBLs, and MILs to incorporate chimeric antigen receptors, genetically modified T-cell receptors, and other genetic modifications, and uses of such expanded and/or modified TILs, PBLs, and MILs in the treatment of diseases such as cancers and hematological malignancies are disclosed herein.
摘要:
In vitro biomimetic models of the neonatal immune system are provided along with methods of using the models in pre-clinical assessment of infant immune cell-mediated and humoral responses to immunogenic stimulation, such as vaccination. The models include one comprising cord blood-derived T follicular helper cells and B cells, and one comprising cord blood-derived dendritic cells and CD4+ T cells. The models can be used, for example, to assess candidate vaccines via analysis of cellular responses to antigen and vaccine exposure.
摘要:
Embodiments of the disclosure concern methods and compositions for immunotherapy for human papillomavirus infection and diseases associated therewith. In specific embodiments, methods concern production of immune cells that target one or more antigens of HPV16 and/or HPV18, including methods with stimulation steps that employ IL-7 and IL-15, but not IL-6 and/or IL-12. Other specific embodiments utilize stimulations in the presence of certain cells, such as costimulatory cells and certain antigen presenting cells.
摘要:
The present invention relates to methods for preparing an artificial immune system. The artificial immune system comprises a cell culture comprising T cells, B cells and antigen-primed dendritic cells. The artificial immune system of the present invention can be used for in vitro testing of vaccines, adjuvants, immunotherapy candidates, cosmetics, drugs, biologics and other chemicals.
摘要:
The present invention relates to methods of constructing an integrated artificial immune system that comprises appropriate in vitro cellular and tissue constructs or their equivalents to mimic the normal tissues that interact with vaccines in mammals. The artificial immune system can be used to test the efficacy of vaccine candidates in vitro and thus, is useful to accelerate vaccine development and testing drug and chemical interaction with the immune system.
摘要:
Regulatory B cells (tBreg) are disclosed herein. These regulatory B cells express CD25 (CD25+) a pan B cell marker such as B220 (B220+), and also express CD19 (CD19+). These regulatory B cells suppress resting and activated T cells in cell contact-dependent manner. Methods for generating these regulatory B cells are also disclosed herein, as are methods for using these regulatory B cells to produce regulatory T cells (Treg). In some embodiments, methods for treating an immune-mediated disorder, such as an autoimmune disease, transplant rejection, graft-versus-host disease or inflammation, are disclosed. These methods include increasing regulatory B cell number or activity and/or by administering autologous regulatory B cells. Methods for treating cancer are also disclosed herein. These methods include decreasing regulatory B cell activity and/or number.
摘要:
The present invention relates to methods for preparing an artificial immune system. The artificial immune system comprises a cell culture comprising T cells, B cells and antigen-primed dendritic cells. The artificial immune system of the present invention can be used for in vitro testing of vaccines, adjuvants, immunotherapy candidates, cosmetics, drugs, biologics and other chemicals.
摘要:
The present invention relates to methods of constructing an integrated artificial immune system that comprises appropriate in vitro cellular and tissue constructs or their equivalents to mimic the normal tissues that interact with vaccines in mammals. The artificial immune system can be used to test the efficacy of vaccine candidates in vitro and thus, is useful to accelerate vaccine development and testing drug and chemical interaction with the immune system.
摘要:
The present invention relates to methods of constructing an integrated artificial immune system that comprises appropriate in vitro cellular and tissue constructs or their equivalents to mimic the normal tissues that interact with vaccines in mammals. The artificial immune system can be used to test the efficacy of vaccine candidates in vitro and thus, is useful to accelerate vaccine development and testing drug and chemical interactions with the immune system.
摘要:
Production and use of novel therapeutic cells, called T-Vehicles, in the allogeneic Adoptive Cell Therapy setting allows a wide range of therapeutic benefits to accrue with minimal or no risk of GVHD. T-Vehicles are created from donor T cells that are altered to contain therapeutic attributes that do not include their native antigen receptors and can deliver therapeutic benefits irrelevant of their native antigen specificity. T-Vehicles can possess highly restricted native antigen specificity that renders them unable to recognize antigens present on normal cells and incapable of initiating GVHD, making them ideal transport vehicles to deliver various therapeutic attributes in vivo. In essence, production and use of T-Vehicles is a paradigm shift that opens the door to therapeutic application of T cells in ways not previously contemplated, independent of whether or not there is an HLA match between the donor and the recipient.