摘要:
Embodiments of the disclosure concern methods and compositions for immunotherapy for human papillomavirus infection and diseases associated therewith. In specific embodiments, methods concern production of immune cells that target one or more antigens of HPV16 and/or HPV18, including methods with stimulation steps that employ IL-7 and IL-15, but not IL-6 and/or IL-12. Other specific embodiments utilize stimulations in the presence of certain cells, such as costimulatory cells and certain antigen presenting cells.
摘要:
The present invention provides methods for producing cell populations enriched for stable, regulatory T cells (Tregs). In particular, the invention relates to methods for culturing T cells such that the final culture is enriched for stable, regulatory T cells. It also relates to methods for stabilizing regulatory T cells. Also provided are compositions enriched for stable, regulatory T cells, which are useful for treating individuals in need of such treatment. The methods and compositions disclosed herein can also be used to treat an individual suffering from an immune-mediated disease.
摘要:
The present invention discloses novel dendritic cell maturation-inducing cytokine cocktails, and methods for inducting type-1 polarized dendritic cells in serum-free conditions which enhance the desirable properties of DC1s generated in serum-supplemented cultures. The invention further discloses methods and systems using IFNγ and other ligands of the IFNγ receptor, in combination with IFNα (or other type I interferons), poly I:C, and other IFNα (and IFNβ) inducers to enhance the IL-12-producing properties of dendritic cells. More specifically, the present invention discloses type-1 polarized dendritic cells that have a unique combination of a fully-mature status and an elevated, instead of “exhausted”, ability to produce IL-12p70. allows for the generation of fully-mature DC1s in serum-free AIM-V medium. The invention discloses systems that use the foregoing products and methods to facilitate the clinical application of DC1-based vaccines and the identification of novel factors involved in the induction of Th1 and CTL responses by DC1.
摘要:
The invention relates to a class of CpG immunostimulatory oligonucleotides containing a CpG immunostimulatory motif and a second motif which is capable of forming secondary structure, including duplex and higher order structures, in vitro and in vivo. The oligonucleotides of the invention are useful as adjuvants in vaccination. The oligonucleotides are also useful for inducing an immune response, inducing expression of a type I interferon (IFN), inducing expression of gamma interferon (IFN-γ), and for treating a variety of conditions, including allergy, asthma, infection, and cancer.
摘要:
A method for making dendritic cells reactive to an antigen comprises obtaining a sample of dendritic cells and contacting the cells with the antigen and at least one Toll-like receptor stimulant. Dendritic cells activated by this method provide a means for treating tumors and for creating animal models of autoimmune diseases.
摘要:
The invention consists in the use of a maturation agent comprising a mixture of ribosomal and/or membrane fractions for the preparation of mature dendritic cells from immature dendritic cells.
摘要:
Methods and compositions are provided for extending the clinical utility of IFN-α in the treatment of a variety of viral and proliferative disorders. Among other aspects, the invention provides methods which increase the efficacy of IFN-α treatment and reduce IFN-α treatment-related side effects. In addition, methods are provided for supporting the survival and for activating natural interferon producing cells (IPCs) in vitro without exogenous IL-3 or GM-CSF. The invention is based on the discovery that certain CpG and non-CpG ISNAs promote survival and stimulation of IPCs.
摘要:
The invention consists in the use of a maturation agent comprising a mixture of ribosomal and/or membrane fractions for the preparation of mature dendritic cells from immature dendritic cells.
摘要:
A method is provided to increase the immunogenicity of an antigen. This method involves the covalent coupling of the antigen to proteins or glycoproteins present on the surface of dendritic cells by a mild biochemical modification which minimizes the denaturation of the antigen and preserving cell viability. Dendritic cells with covalently linked antigen on their surface can be used for generating a specific response to the antigen. The present method can be used for both therapeutic and preventive purposes.