Abstract:
This disclosure is based, at least in part, on an unexpected discovery that the novel nanobodies and variants thereof are able to specifically bind afucosylated or sialylated IgG Fc glycoforms. Glycosylation of the IgG Fc domain is a major determinant of the strength and specificity of antibody effector functions, modulating the binding interactions of the Fc with the diverse family of Fcγ receptors. These Fc glycan modifications, such as removal of the core fucose residue, are newfound clinical markers for predicting severity of diseases, such as diseases caused by dengue virus (DENV) or SARS-CoV-2. However, it remains challenging to accurately distinguish specific IgG glycoforms without costly and time-intensive methods. The novel glycol-specific nanobodies and variants thereof, as disclosed herein, can be used as rapid clinical diagnostics or prognostics to risk stratify patients with viral and inflammatory diseases.
Abstract:
The present invention relates to methods for enhancing adoptive cell transfer immunotherapy by administering a protein that has IgG cysteine protease or IgG endoglycosidase activity.
Abstract:
This invention relates to methods and compositions for inhibiting or depleting antibodies, e.g., total IgG including neutralizing antibodies. In particular, the invention relates to methods of inhibiting or depleting antibodies against a heterologous agent when the heterologous agent is administered to a subject, comprising administering to the subject an effective amount of recombinant or modified Streptococcus pyogenes IgG degrading enzyme (IdeS) prepared from codon-optimized nucleic acids and/or modified nucleic acids, thereby inhibiting or depleting antibodies and inhibiting neutralization of the heterologous agent, e.g., to improve viral vector-mediated gene therapy.
Abstract:
The invention provides use of an IdeS polypeptide, or a polynucleotide encoding an IdeS polypeptide, in the manufacture of a medicament for the treatment or prevention of a disease or condition mediated by IgG antibodies.
Abstract:
The invention provides use of an IdeS polypeptide, or a polynucleotide encoding an IdeS polypeptide, in the manufacture of a medicament for the treatment or prevention of a disease or condition mediated by IgG antibodies.
Abstract:
The present invention relates to a novel polypeptide which displays IgG cysteine protease activity, and in vivo and ex vivo uses thereof. Uses of the polypeptide include methods for the prevention or treatment of diseases and conditions mediated by IgG, and methods for the analysis of IgG.
Abstract:
The present invention relates to a conditioning regimen for the transplant of a cell, tissue or organ, optionally hematopoietic stem / progenitor cells, to a subject. The invention also relates to methods for the induction of hematopoietic chimerism in a subject. The invention also relates to methods for the prevention or treatment of a disease or condition in a subject, in which hematopoietic chimerism is induced in order to improve the benefit to the subject of a subsequent therapy. The subsequent therapy may be a cell, tissue or organ transplant or may a gene therapy administered using genetically modified hematopoietic stem cells/progenitor cells.
Abstract:
Disclosed herein are methods for treating patients that may develop or already have pre-existing gene therapy neutralizing antibodies by administering a protease that cleaves peptide bonds present in immunoglobulins or by administering a glycosidase that cleaves carbohydrate residues present on immunoglobulins, or other similar enzymatic cleavage of immunoglobulins in vivo. Also disclosed are methods for utilizing IdeS and other immunoglobulin G-degrading enzyme polypeptides for gene therapy treatment of a disease in a patient in need thereof.