摘要:
Methods and systems for the valorization of carbon monoxide emissions from electric arc furnaces into highly valuable low-carbon footprint chemicals using carbon monoxide electrolysis are disclosed herein are disclosed. A disclosed method includes operating an electric arc furnace, generating, via operation of the electric arc furnace, a volume of carbon monoxide, supplying the volume of carbon monoxide to a cathode area of a carbon monoxide electrolyzer to be used as a reduction substrate, and generating, using the carbon monoxide electrolyzer, the reduction substrate, and an oxidation substrate, a volume of generated chemicals. The volume of generated chemicals is at least one of: a volume of hydrocarbons, a volume of organic acids, a volume of alcohol, a volume of olefins and a volume of N-rich organic compounds.
摘要:
Provided is a method for manufacturing reduced iron which includes the steps of: i) drying ores in an ore drier; ii) supplying the dried ores to at least one reduction reactor; iii) reducing the ores in the at least one reduction reactor and manufacturing reduced iron; iv) discharging exhaust gas by which the ores are reduced in the reduction reactor; v) branching the exhaust gas and providing the branched exhaust gas as ore feeding gas; and vi) exchanging heat between the exhaust gas and the ore feeding gas and transferring the sensible heat of the exhaust gas to the ore feeding gas. In the supplying the dried ores to the at least one reduction reactor, the dried ores are supplied to the at least one reduction reactor by using the ore feeding gas.
摘要:
A system and method for obtaining a metal oxide reduction product in a metal oxide reduction reaction using a pyrolysis-derived hydrogen from a pyrolysis reactor that pyrolyzes a hydrocarbon feedstock to deliver pyrolysis gases that include the pyrolysis-derived hydrogen, a pyrolysis carbon product and a hydrocarbon fraction of unreacted hydrocarbon feedstock. Pyrolysis gases are fed through a high-temperature carbon separator to separate the pyrolysis carbon product and then flow at a working temperature below pyrolyzation temperature to a reduction furnace that runs the metal oxide reduction reaction such that the pyrolysis-derived hydrogen participates in that reaction. A thermal management system maintains the working temperature of the pyrolysis gases and manages the processing of unreacted pyrolysis-derived hydrogen through heat exchange and other thermal management techniques and tools.
摘要:
A system for the production of sponge iron, the system including a direct reduction shaft including a first inlet for introduction of iron ore into the shaft, a first outlet for removing sponge iron from the shaft, a reduction gas source, connected through a gas line with the shaft, a first compressor in said gas line, and a primary circuit for conducting at least a part of the top gas therethrough. The primary circuit is connected in one end with shaft and in another end with said gas line downstream said first compressor. The system also includes a secondary circuit for conducting at least a portion of gas removed from gas conducted through the primary circuit, said secondary circuit being connected in one end to the primary circuit and in another end to said gas line upstream said first compressor. The system further includes means therein for reducing the pressure of said portion of gas conducted through the secondary circuit, and a first valve for controlling a flow of said portion of gas into the secondary circuit.
摘要:
A process for the production of sponge iron and a system for the production of sponge iron. The process includes the steps of: producing electrolytic hydrogen and oxygen by electrolysis of water; producing methanol by reacting the electrolytic hydrogen with carbon dioxide; storing the methanol; reforming the methanol using water and/or oxygen to provide carbon dioxide and released hydrogen; providing the released hydrogen as a component portion of a reducing gas to a direct reduction shaft; and reducing iron ore in the direct reduction shaft using the reducing gas to produce the sponge iron.
摘要:
A method for producing reduced iron that produces reduced iron by reducing iron oxide charged in a shaft furnace, in which a heated gas mixture which contains a reducing gas and a nitrogen gas, the reducing gas containing 90 volume % or more of a hydrogen gas, is blown into the shaft furnace from a tuyere equipped at a lower portion of a reduction zone of the shaft furnace, at least part of the reducing gas is blown into a cooling zone of the reduced iron provided at a lower portion of the shaft furnace at normal temperature, and the reducing gas that has flowed up in the cooling zone is used for reduction of the iron oxide.
摘要:
A method for producing reduced iron that produces reduced iron by reducing iron oxide charged in a shaft furnace, in which a gas mixture which contains a reducing gas and a nitrogen gas, and has a predetermined temperature, is blown into the shaft furnace. The reducing gas contains 90 volume% or more of a hydrogen gas.
摘要:
An improved direct smelting system and process using a smelt reduction vessel (SRV), and optionally, a cyclone converter furnace (CCF). The improved system and process utilizes a fast quench system in which hot process offgas containing molten material is quench-cooled from greater than 1400° C. (2552° F.) to no more than 600° C. (1112° F.) in a time-of-flight of no greater than 1 second. The quenching occurs using water spray injection and vaporization to cool, stress and break solid slag into slag pieces small enough to remove from the quenching system. The improved system eliminates plant availability problems associated with (i) accretion formation in the offgas train as hot process offgas cools down in a conventional (slow) manner to allow for steam-raising for power generation or other heat recovery purposes, and (ii) trigger mechanisms causing slag foaming events in the SRV that propagate up the offgas train.
摘要:
Provided is an apparatus for manufacturing reduced iron and a method for manufacturing reduced iron. The method for manufacturing reduced iron includes the steps of: i) drying ores in an ore drier; ii) supplying the dried ores to at least one reduction reactor; iii) reducing the ores in the at least one reduction reactor and manufacturing reduced iron; iv) discharging exhaust gas by which the ores are reduced in the reduction reactor; v) branching the exhaust gas and providing the branched exhaust gas as ore feeding gas; and vi) exchanging heat between the exhaust gas and the ore feeding gas and transferring the sensible heat of the exhaust gas to the ore feeding gas. In the steps of supplying the dried ores to the at least one reduction reactor, the dried ores are supplied to the at least one reduction reactor by using the ore feeding gas.
摘要:
Provided is an apparatus for manufacturing reduced iron and a method for manufacturing reduced iron. The method for manufacturing reduced iron includes the steps of: i) drying ores in an ore drier; ii) supplying the dried ores to at least one reduction reactor; iii) reducing the ores in the at least one reduction reactor and manufacturing reduced iron; iv) discharging exhaust gas by which the ores are reduced in the reduction reactor; v) branching the exhaust gas and providing the branched exhaust gas as ore feeding gas; and vi) exchanging heat between the exhaust gas and the ore feeding gas and transferring the sensible heat of the exhaust gas to the ore feeding gas. In the steps of supplying the dried ores to the at least one reduction reactor, the dried ores are supplied to the at least one reduction reactor by using the ore feeding gas.