摘要:
A fuel injection valve having a variable stroke mechanism is constructed. A valve body provided to be slidable; a first movable element for cooperating with the valve body; an inner fixed iron core provided at a position to oppose a second movable element; an outer fixed iron core; and a coil are included. A lift amount of the second movable element is set larger than a lift amount of the first movable element, and a portion of the second movable element is projected into the first movable element. In this way, large and small lifts are constituted by using a difference between magnetic attractive forces that are generated in the first movable element and the second movable element by a current supplied to the coil.
摘要:
A fuel injection device of a direct injection engine is provided. The device includes an engine body, a fuel injection valve, and a controller for controlling a fuel injection by the fuel injection valve. The fuel injection valve has a nozzle hole, a valve body for opening and closing the nozzle hole, and first and solenoid coils for stroking the valve body by first and second stroke amounts, respectively. The controller performs the fuel injection by the first solenoid coil in an intake stroke period within an engine operating range with an engine load below a predetermined load. The controller performs the fuel injection with a fuel pressure of 40 MPa or above by the second solenoid coil in a period between a compression stroke late stage and an expansion stroke early stage within a low-engine-speed range with an engine speed below a predetermined speed within a high-engine-load range.
摘要:
The fuel injection system comprises a fuel injector controlled by commands of a control unit. The fuel injector comprises a metering servo valve having a control chamber provided with an outlet passage that is opened/closed by an open/close element that is axially movable. The open/close element is carried by an axial guide element that is separate from an armature of an electromagnet. The open/close element is held in the closing position by a spring acting through an intermediate body. In some instances, the strokes of the open/close element and of the armature are chosen so as to eliminate, upon closing of the servo valve, the rebounds of the open/close element subsequent to the first rebound. The control unit controls a fuel injection comprising a pilot fuel injection and a main fuel injection, via two distinct electrical commands, which are spaced apart by a dwell time such as to occur in an area of reduced variation of the amount of injected fuel. Therefore, the stability of operation of the fuel injection system increases as the dwell time varies.
摘要:
A fuel-injection system for an internal-combustion engine has at least one fuel injector with a fuel-metering servo valve provided with an open/close element, which is movable in response to the action of an electric actuator; and an electronic control unit which issues to the electric actuator two electrical commands, one for carrying out a pilot injection and one for carrying out a main injection; the two electrical commands being separated by an electrical dwell time such that the main injection starts, without solution of continuity with the pilot injection, when an open/close needle for carrying out fuel injections into a cylinder of the internal-combustion engine remains at a lift value in which the fuel flow rate is negligible; in particular, the second electrical command is issued during a rebound of the open/close element on the valve seat.
摘要:
A fuel injection device of a direct injection engine is provided. The device includes an engine body, a fuel injection valve, and a controller for controlling a fuel injection by the fuel injection valve. The fuel injection valve has a nozzle hole, a valve body for opening and closing the nozzle hole, and first and solenoid coils for stroking the valve body by first and second stroke amounts, respectively. The controller performs the fuel injection by the first solenoid coil in an intake stroke period within an engine operating range with an engine load below a predetermined load. The controller performs the fuel injection with a fuel pressure of 40 MPa or above by the second solenoid coil in a period between a compression stroke late stage and an expansion stroke early stage within a low-engine-speed range with an engine speed below a predetermined speed within a high-engine-load range.
摘要:
An injector comprising one or more piezoelectric driving stacks wherein a flow control member of the injector is driven directly by the one or more piezoelectric stacks without additional amplification means or interposing elements while a flow area of the nozzle is variably adjustable to deliver controlled flow rates in a desired flow profile to improve engine performance and reduce emissions. The injector is configured to support required flow rates with minimal linear movement of the flow control member. The injector and drive electronics are configured to deliver higher frequency operation and response with increased operational stability due to minimal response lag.
摘要:
A fuel injector apparatus comprising a piezoelectric driving stack and injector assembly wherein a flow control member of the fuel injector apparatus is driven directly by the piezoelectric stack without additional amplification means or interposing elements while the flow area of the nozzle portion is variably adjustable to deliver controlled flow rates in a desired flow profile to improve engine performance and reduce emissions. The injector configuration is adapted to support required flow rates with minimal linear movement of the flow control member.
摘要:
A fluid injection device having a main injection axis and including at least: a housing; an actuator axially mounted in the housing and including a stack with two axially opposed front faces and including at least one electro-active portion with an electro-active material; and a pre-stressing mechanism adapted for at least partially pre-stressing the stack. The pre-stressing mechanism includes at least a tightening clamp outside the stack and provided between the stack and the housing.
摘要:
A mechanically actuated electronically controlled fuel injector (MEUI) includes a first electrical actuator that controls the position of a spill valve, and a second electrical actuator to control pressure on a closing hydraulic surface associated with a directly operated nozzle check valve. The fuel injector is actuated via rotation of a cam to move a plunger to displace fuel from a fuel pumping chamber either to a spill passage, or at high pressure out of a nozzle outlet of the fuel injector for an injection event. The minimum controllable fuel injection quantity, especially as it relates to small closely coupled post injections following a large main injection, is accomplished by the inclusion of a Z orifice passage that maintains a fluid connection between a needle control chamber and the nozzle supply passage. The inclusion of the Z orifice passage slows the rate at which pressure drops in the needle control chamber to commence an injection event, but also hastens the rate at which pressure builds in the needle control chamber to end an injection event. The result is a smaller post injection quantity and, if desired, a longer, shorter or same dwell time between injection events.
摘要:
There was a problem that various fuel spray shapes cannot be obtained according to operating conditions of a direct injection engine. There is provided a giant magnetostrictive element type injector which controls the change rate (rising slope) or peak value of a supply current applied to a solenoid for magnetic field generation which displaces a giant magnetostrictive element according to requests of an engine. The steeper the rising slope of the supply current to the solenoid, the higher becomes a lifting speed of a plunger, the higher becomes the initial speed of a fuel spray, and the longer the penetration can be. The gentler the rising slope thereof, the lower becomes the lifting speed of the plunger, the lower becomes the initial speed of the fuel spray, and the shorter the penetration can be. Further, the larger the peak value of the supply current, the larger the lift amount of the plunger can be and the larger becomes the fuel flow rate, allowing an increase in fuel spray density (resulting in a fuel spray that is not easily crushed). The smaller the peak value of the supply current, the smaller becomes the fuel flow rate, allowing a decrease in fuel spray density (resulting in a fuel spray that is easily crushed).