Abstract:
The invention relates to a method and a device for actuating an injection valve, which has a piezo actuator and a nozzle needle, of a fuel injection system of an internal combustion engine, in which method a control unit, in a manner dependent on a setpoint stroke height of the piezo actuator in successive injection cycles, outputs a control signal for changing the actual stroke height of the piezo actuator, characterized in that the control unit changes the setpoint stroke height of the piezo actuator, for compensation of the temperature dependency of the capacitance of the piezo actuator, in a manner dependent on the temperature of said piezo actuator.
Abstract:
A solid actuator has an actuator structural unit, a top plate and a base plate. A hollow cylinder part made of maraging steel is heated to a predetermined first temperature at which the maraging steel is in an austenitic state. A corrugated tube is shaped from the hollow cylinder part by a shaping process, while the maraging steel is still in an austenitic state. The corrugated tube is cooled such that the maraging steel is in a martensitic state. The actuator structural unit is inserted into the corrugated tube. The top plate and the base plate are fixed to the corrugated tube such that the actuator structural unit is clamped between the top plate and the base plate at a predetermined pre-tension.
Abstract:
An electrically actuated control valve has three mouths and three operating positions, in which the three mouths includes a first mouth for inlet of a working fluid, and a second mouth and a third mouth for outlet of the working fluid. The three operating positions include a first operating position in which a passage of fluid from the first mouth to the second mouth and the third mouth is enabled, a second operating position in which a passage of fluid from the first mouth to only one of said second and third mouths is enabled, and a third operating position in which the passage of fluid from the first to the second mouth and the third mouth is disabled. The control valve includes an electric or electromagnetic actuator for controlling the passage of fluid from the first mouth to the second and third mouths providing the aforesaid three operating positions.
Abstract:
An injection device for an internal combustion engine includes a piezo actuator for moving a valve piston, and a control unit for actuating the piezo actuator. The control unit supplies electrical pulses having different pulse energy to the piezo actuator and determines a return stroke between the piezo actuator and valve piston or a time delay caused by the return stroke. The control unit selects the pulse energies such that a maximum excursion of a movement of the piezo actuator caused by at least one pulse is smaller than the return stroke, whereas a maximum excursion of a piezo actuator movement caused by another pulse(s) is greater than the return stroke, after each of the pulses detects a frequency spectrum of a voltage signal at the piezo actuator during the movement caused by the respective pulse, and determines the return stroke or time delay based on these frequency spectra.
Abstract:
An electrically actuated control valve has three mouths and three operating positions, in which the three mouths includes a first mouth for inlet of a working fluid, and a second mouth and a third mouth for outlet of the working fluid. The three operating positions include a first operating position in which a passage of fluid from the first mouth to the second mouth and the third mouth is enabled, a second operating position in which a passage of fluid from the first mouth to only one of said second and third mouths is enabled, and a third operating position in which the passage of fluid from the first to the second mouth and the third mouth is disabled. The control valve includes an electric or electromagnetic actuator for controlling the passage of fluid from the first mouth to the second and third mouths providing the aforesaid three operating positions.
Abstract:
An injection device for an internal combustion engine includes a piezo actuator for moving a valve piston, and a control unit for actuating the piezo actuator. The control unit supplies electrical pulses having different pulse energy to the piezo actuator and determines a return stroke between the piezo actuator and valve piston or a time delay caused by the return stroke. The control unit selects the pulse energies such that a maximum excursion of a movement of the piezo actuator caused by at least one pulse is smaller than the return stroke, whereas a maximum excursion of a piezo actuator movement caused by another pulse(s) is greater than the return stroke, after each of the pulses detects a frequency spectrum of a voltage signal at the piezo actuator during the movement caused by the respective pulse, and determines the return stroke or time delay based on these frequency spectra.
Abstract:
The invention relates to a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine, comprising a nozzle needle (1) which is able to perform stroke motions and by the stroke motion of which at least one injection opening can be exposed or closed, and further comprising a control valve (2) for controlling the stroke motion of the nozzle needle (1) in that, depending on the respective switch position of the control valve (2), hydraulic pressure applied in closing direction to the nozzle needle (1) in a control chamber (3) is altered, and further comprising a sensor array (4) for detecting the needle closing time. According to the invention, the sensor array (4) is arranged in the low-pressure area of the fuel injector in a space (5) which is sealed with respect to the fuel-conducting area (6). Sealing of the space (5) is effected by a membrane (7) made of a fuel-resistant, electrically conductive material, allowing the membrane (7) to also be utilized for implementing a ground connection.
Abstract:
A method of identifying an individual short circuit fuel injector, within an injector bank of an engine comprising a plurality of fuel injectors. Each fuel injector has a piezoelectric actuator and an associated injector select switch forming part of an injector drive circuit. The method comprises: (i) charging all of the piezoelectric actuators of the plurality of fuel injectors within the injector bank during a charge phase; (ii) at the end of the charge phase waiting for a delay period; and (iii) subsequently closing an injector select switch of a fuel injector to select said fuel injector. The method further comprises: (iv) determining a stack voltage present on terminals of the piezoelectric actuator of the selected fuel injector and storing the stack voltage in a data store. The stack voltage is indicative of an amount of charge present on the selected injector at the end of the delay period. The method further comprises (v) repeating steps (i) to (iv) for each fuel injector in the injector bank in turn; and (vi) identifying the individual short circuit fuel injector as being the injector which has discharged beyond a predetermined voltage drop limit during the delay period. The method also comprises generating a short circuit fault signal for the identified fuel injector.
Abstract:
A fuel injector for use in an internal combustion engine, comprising a nozzle body being provided with a nozzle bore and at least one set of one or more outlets for fluid, an outer valve member received within the nozzle bore and being engageable with a first seating region of the nozzle body to control the flow of a first fluid from a first delivery chamber, the outer valve member being provided with an outer valve bore, and an inner valve member received within the outer valve bore and being engageable with a second seating region of the nozzle body to control the flow of a second fluid from a second delivery chamber. In various embodiments, the fuel injector can be arranged to allow the first and second fluids to be injected separately and/or together. In one embodiment, the first and second fluids can be mixed within the injector before injection.
Abstract:
A fuel injector for an internal combustion engine, the fuel injector comprising an injector body, a fuel supply passage defined in the injector body, the fuel supply passage containing fuel under high pressure in use of the injector, a pressure sensor for measuring the pressure of fuel in the passage in use, wherein the pressure sensor is situated within the injector body and is separated from fuel in the passage in use, and a method of fuel injection, comprising constructing an hydraulic behavior profile by fuel pressure measurement, using the hydraulic behavior profile to predict fuel pressure that will prevail in a fuel injector during an injection event, and supplying a control signal to the fuel injector to control the amount of fuel injected during the injection event in accordance with the predicted fuel pressure. By predicting the fuel pressure that will prevail during an injection event, the fuel delivered during the injection event can be accurately controlled.