摘要:
Embodiments of the invention are directed to compact bearing assemblies configured to operate in small spaces and/or in harsh environments, bearing apparatuses including such bearing assemblies, and method of operating such bearing assemblies and apparatuses. For instance, one or more compact bearing assemblies may at least partially rotatably secure a shaft of a power generation unit to a housing thereof. Also, a first compact bearing assembly may connect or couple to the shaft and may rotatably engage a second compact bearing assembly, which may be connected or otherwise secured to the housing.
摘要:
A bearing apparatus includes a cylindrical sleeve, a shaft rotatably inserted in the sleeve, lubricating oil arranged in a gap defined between an inner circumferential surface of the sleeve and an outer circumferential surface of the shaft, a seal member arranged at an axially upper end portion of the sleeve projecting from the sleeve, and an annular member fixed to an outer circumferential surface of the axially upper end portion of the shaft to rotate together with the shaft. The annular member includes a projecting portion projecting axially downward. The seal member and an axially lower end portion of the projecting portion overlap each other when viewed in at least one of the axial direction or a radial direction.
摘要:
A positive pressure generating mechanism comprising a positive pressure generating groove is provided to a high-pressure side of one of two sliding surfaces that slide relative to each other in a pair of sliding components, and a negative pressure generating mechanism comprising a negative pressure generating groove is provided to a low-pressure side. The positive pressure generating groove and negative pressure generating groove are communicated with a high-pressure fluid side and separated from a low-pressure fluid side by a seal surface.
摘要:
A dynamic pressure bearing apparatus includes a bearing portion, a shaft, a radial dynamic pressure bearing portion, and a seal gap. An annular member arranged in an annular shape, fixed to the shaft axially between the seal portion and the attachment surface, and arranged to extend radially outward beyond an opening of the seal gap. A minute horizontal gap extending radially is defined between an upper surface of the bearing portion and a lower surface of the annular member. The seal gap is arranged to be in communication with an exterior space through the horizontal gap.
摘要:
A system and method are provided for sealing a fluid dynamic bearing motor. A first and a second folded fluid channel are shaped for maximizing bearing axial span and establishing angular stiffness, to resist gyroscopic rocking of the facing bearing surfaces. The first folded fluid channel is limited to occupying at least a portion of the same axial space as the bearing. A first and a second fluid sealing system are connected to opposite axial ends of the bearing. The first fluid sealing system forms an active pumping seal to pump fluid during motor rotation. In an aspect, a top cover attached shaft, and a single thrust surface are employed, allowing for a rigid motor structure and power reduction in applications including high rotational speed disc drives. Also, by employing a rigid shaft design, significantly lower amplitude radial vibration responses are exhibited at higher frequencies than prior art motor designs.
摘要:
A gas turbine engine includes a fan, a compressor section, a combustor, and a turbine section. The engine also includes a rotating element and at least one bearing compartment including a bearing for supporting the rotating element, a seal for resisting leakage of lubricant outwardly of the bearing compartment and for allowing pressurized air to flow from a chamber adjacent the seal into the bearing compartment. A method and section for a gas turbine engine are also disclosed.
摘要:
Provided is optical imaging probe that is able to obtain stable observation image by optical path correction.It includes a rotation driving source (10) adapted to drive and rotate a rotor (11); a first single-mode optical fiber (33) inserted and fixed over the axial direction in the rotation center side of the rotor (11), the front end of which light is able to enter; a second single-mode optical fiber (34) supported at the rear end side of the first single-mode optical fiber (33) in a non-rotatable manner; and a gap (s) and optical path correcting means (35) interposed between the first single-mode optical fiber (33) and the second single-mode optical fiber (34), and the optical path correcting means (35) is adapted to expand and collimate the light transmitted from one single-mode optical fiber and pass it through the gap (s), and then guide it to the other single-mode optical fiber.
摘要:
Embodiments of the invention are directed to compact bearing assemblies configured to operate in small spaces and/or in harsh environments, bearing apparatuses including such bearing assemblies, and method of operating such bearing assemblies and apparatuses. For instance, one or more compact bearing assemblies may at least partially rotatably secure a shaft of a power generation unit to a housing thereof. Also, a first compact bearing assembly may connect or couple to the shaft and may rotatably engage a second compact bearing assembly, which may be connected or otherwise secured to the housing.
摘要:
The fluid dynamic bearing system has at, least one stationary part, and at least one rotating part that is supported rotatable about a rotational axis with respect to the stationary part. A bearing gap filled with bearing fluid is formed between mutually opposing surfaces of the stationary and of the rotating part. The bearing system includes at least one fluid dynamic radial bearing and at least one fluid dynamic axial bearing that are disposed along sections of the bearing gap. In one aspect of the invention, an annular sealing gap for sealing open ends of the bearing gap has one end connected to the bearing gap and one end connected to an annular reservoir, the outside radius of the reservoir measured from the rotational axis being larger than the outside radius of the sealing gap.
摘要:
A positive pressure generating mechanism comprising a positive pressure generating groove is provided to a high-pressure side of one of two sliding surfaces that slide relative to each other in a pair of sliding components, and a negative pressure generating mechanism comprising a negative pressure generating groove is provided to a low-pressure side. The positive pressure generating groove and negative pressure generating groove are communicated with a high-pressure fluid side and separated from a low-pressure fluid side by a seal surface.