Abstract:
A seal structure for an electromagnet lead wire includes an annular yoke including an annular groove, a wiring hole configured to pass a lead wire of an exciting coil, an insulating resin configured to seal the exciting coil, and a seal member arranged in the hole. The wiring hole includes a though hole of a case, and a concave portion of the yoke. The insulating resin includes a projecting portion whose distal end face is located in the concave portion. The seal member includes a columnar portion inserted into the though hole, and a flange portion located in the concave portion. The flange portion is sandwiched and compressed between the device inner surface of the case and the distal end face of the insulating resin.
Abstract:
A rotation transmission device includes a control retainer and a rotary retainer having bars arranged circumferentially alternating with each other such that pockets are defined between the adjacent pairs of bars. A pair of rollers are mounted in each pocket with an elastic member disposed between the pair of rollers such that the pair of rollers are pushed by the respective bars to their respective disengaged positions when the control retainer and the rotary retainer rotate relative to each other. A spring holder is fitted on an input shaft while abutting one axial end surface of an inner ring. The spring holder has spring support pieces on the outer periphery thereof to prevent radially outward movement of the elastic members. The spring support pieces are plate-shaped members disposed radially outwardly of the elastic members to extend in the axial direction in parallel to the outer periphery of the inner ring.
Abstract:
An electromagnetic clutch 1 including a thermal fuse 4, includes base portions 57a and 57b that are provided on a flange portion 522 of a bobbin 52 apart from each other and respectively include: wire locking portions 57a1 and 57b1 for locking a drawn wire part 511 of an electromagnetic coil 51 drawn onto the flange portion 522 halfway through a process of winding the electromagnetic coil around the bobbin; and thermal fuse locking portions 57a3 and 57b3 for locking lead wires 4b and 4c of the thermal fuse 4 apart from the drawn wire part 511. Each locking portion is provided along the circumferential direction of the flange portion 522. The lead wires 4b and 4c are connected between one end 511a of the drawn wire part 511 in one base portion 57a and one end 511b of the drawn wire part 511 in the other base portion 57b.
Abstract:
An electromagnetic clutch is provided with: a rotor which has a friction plate; a stator which has an electromagnetic coil; and an armature which is attracted to the friction plate by electromagnetic attraction force generated by the conduction of electricity to the electromagnetic coil. The electromagnetic coil includes electromagnetic coils. The electromagnetic clutch is also provided with a circuit switching section which is configured in such a manner that, when a switch-on command is outputted, the circuit switching section allows an electric current to flow in parallel into the electromagnetic coils, and then, after the armature is attracted to the friction plate, the circuit switching section switches a circuit for conducting electricity to the electromagnetic coil, from a parallel circuit to a series circuit so that an electric current flows in series into the electromagnetic coils.
Abstract:
Disclosed is a field coil assembly of an electromagnetic clutch including a bobbin from which lead wires, which are both ends of a coil made of an aluminum-based material, protrude outward, a core that surrounds the bobbin such that the lead wires are exposed, a bobbin terminal installed at the bobbin while being adjacent to the lead wire of the coil, and a connector coupled to the core and including a lead wire terminal. The lead wires of the coil are connected to the bobbin terminal through heating and pressing.
Abstract:
The present invention relates to an assembling structure of field coil, which has a simple mounting structure for a diode and a resistor to cut an off-noise of an electromagnetic clutch and to prevent damage of peripheral parts due to surge voltage generation when power source applied to an electronic coil body is cut off, thereby improving a mounting efficiency, reducing a manufacturing cost by reduction of the number of parts, and realizing an automatic production. The assembling structure of field coil includes an electronic coil body (101), a core ring (110) and a sleeve (120) having a first and second terminals (131) (132), and a case that has a receiving part (135) and a first and second connection parts (136) (137).
Abstract:
The present invention relates to an assembling structure of field coil, which has a simple mounting structure for a diode and a resistor to cut an off-noise of an electromagnetic clutch and to prevent damage of peripheral parts due to surge voltage generation when power source applied to an electronic coil body is cut off, thereby improving a mounting efficiency, reducing a manufacturing cost by reduction of the number of parts, and realizing an automatic production. The assembling structure of field coil includes an electronic coil body(101), a core ring(110) and a sleeve(120) having a first and second terminals(131)(132), and a case that has a receiving part (135) and a first and second connection parts(136)(137).
Abstract:
A yoke of an electromagnetic clutch includes a ring case, a coil assembly, a connector, and at least one contact. The ring case includes an annular groove and an opening. The coil assembly is positioned in the annular groove. The connector is positioned in the opening of the ring-case and includes a first groove to receive an end portion of the coil assembly, a second groove to receive a lead wire of a diode, and a third groove to receive an end portion of an external wire. The at least one contact includes three pairs of slits and may be inserted in the connector so that each of the three pairs of slits is aligned with a respective one of the first groove, the second groove, and the third groove to form an electrical connection between the end portion of the coil assembly, the lead wire of the diode, and the end portion of the external wire.
Abstract:
The object of the present invention is to provide an electromagnetic friction connecting apparatus, which allows the easier operations associated with the installation of an exciting coil or a search coil in a core element. Input and output terminals having second horizontal parts extending in the vehicle inward direction and second vertical parts extending from the ends of the second horizontal parts into the radial outward direction are provided for the exciting coil and the search coil. Each end of the second vertical parts is situated radially inside a periphery surface of the exciting coil. Holes which allow the respective ends of the second vertical parts of the input and output terminals to face the outside are made on the core element and the housing. They are connected to the ends of the second vertical parts of the input and output terminals by inserting couplers into these holes.
Abstract:
A terminal engagement-insertion portion for an electromagnetic coupling device to be inserted into the through hole of a yoke is provided with two terminal holding portions and each of which has a coil engagement-insertion groove and a terminal engagement-insertion hole. In addition, an insertion portion to insert the guide portion of a terminal housing thereinto is defined between the terminal holding portions. While the guide portion is being inserted into the insertion portion, the terminals are electrically connected with the ends of an exciting coil, respectively.