Abstract:
According to an aspect, a device may include a first member, a second member, and a wrist mechanism disposed between the first member and the second member. The wrist mechanism may include a first cylinder portion coupled to the first member, and a second cylinder portion coupled to the second member. The first cylinder portion may be rollably engaged with the second cylinder portion such that movement of the first cylinder portion with respect to the second cylinder portion is configured to cause the first member to move in at least two directions with respect to the second member. The second cylinder portion may be positioned with respect to the first cylinder portion such that a longitudinal axis of the second cylinder portion is orthogonal to a longitudinal axis of the first cylinder portion.
Abstract:
An involute, non-ring, continuous teeth, spherical gear transmission mechanism includes a female and a male spherical gear to form a three degree-of-freedoms deputy campaign. And its design regularity is the same as that of common one degree-of-freedom gear, which is involute tooth profile for continuous engagement, therefore such spherical gears have the same transmission features as common one degree-of-freedom gear, like fixed transmission ratio and efficiency. This invention (utility) of involute non-ring continuous teeth spherical gear transmission mechanism solve problems that distributed-teeth spherical gear cannot provide accurate fixed ratio transmission and that spherical involute gear can only provide 2 degree of freedoms. It provides a better condition of spherical gear mechanism for wide use in practical engineering applications.
Abstract:
A gear pair includes a small-diameter conical involute gear having a conical angle, and a large-diameter conical involute gear having a conical angle. The small-diameter conical involute gear and the large-diameter conical involute gear are constituted by an aggregate of imaginary cylindrical gears.
Abstract:
In order to provide pulsating thrust on vehicle half-shafts during excess differential actions such as occur on spin-outs or skids on ice, the side gear teeth are modified to exhibit two different e.g. involutes on the single tooth engagement zone (P.sub.1 -P.sub.2). Their junction line is a convex discontinuity (Q), the modified teeth becoming thicker. The pinions are typically unmodified.The pulsating increases friction, which reduces spin-out tendencies. The friction can be increased more by inserting friction rings between the side gears and their bearings.
Abstract:
Face-gear transmissions have been used hitherto only for secondary applications, with little running hours and low loads. They form a type of underdeveloped angle transmissions. When analyzing said underdevelopment, it was surprisingly found that well-known gear theory had not been applied correctly. Especially the teeth-tip-height can be increased considerably in the region where the face-gear teeth have increased pressure angles, resulting in considerably increased loading capacity and meshing quotient, all based on meshing cooperation with standard cylindrical gears with either straight (spur) or helical teeth. The angle between the transmission shafts may be 90.degree., less or over, the shafts may intersect or cross. In case involute toothing is chosen for the cylindrical gear wheel, all well-known advantages remain valid, thus alignment of the transmission is considerably less critical than with bevelled transmissions, axial-pinion loads are less or absent, loading capacity is comparable or better and transmission ratios surpassing approximately 1:5 become the more attractive. In many cases less transmission steps will be possible, reducing size and cost. Simple replacement becomes possible, without any alignment problems. Face gear transmission now may be used for primary, high load, long-life industrial applications.
Abstract:
A straight bevel gear having a gear body that includes a first set of gear teeth and at least one web. The set of gear teeth may have a spherical involute configuration. The web may extend between adjacent members of the set of gear teeth such that the web may be completely and continuously curved in multiple directions.
Abstract:
The present disclosure relates to a gear set, especially for a rotary-wing aircraft, with two intermeshing gear wheels, each mounted on a respective shaft. In particular, in a normal section, the gear wheels of the gear set have different pressure angles on a drive side from the pressure angles on a freewheel side at the beginning of an engagement.
Abstract:
A bevel gear drive with two bevel gears rotates about respective rotation axes intersecting at an intersection point, forming an angle of intersection. A computer determines the tooth shape of these tooth flanks based on data other than a tooth shape. The data are characteristic for a particular contact path represented by a sequence of contact points. The tooth shape of the tooth flanks is determined for several contact paths, with the interacting tooth flanks at all contact points having a common normal, which passes through a pitch point located between the two rotation axes and spaced from the intersection point equal to the radius r. Geometry data for the bevel gear are determined from the shape of the tooth flanks and stored in a format suitable for automatically generating a parts program for a processing machine with at least five axes.
Abstract:
In a face gear transmission with a cylindrical pinion and a face gear meshing therewith the toothing of the face gear is derived from a theoretical profile (22) of a pinion with an infinitely small thickness by moving the centre of this pinion along an imaginary axis which the coincides with the axis of rotation of the cylindrical pinion. The teeth of the face gear are crowned so as to achieve the required tooth clearance. The shape of the teeth of the face gear is such that upon the movement of the theoretical pinion profile (22) in the direction of the imaginary axis of rotation, starting from a defined diameter between the maximum and the minimum diameter of the toothing of the face gear, the centre of the theoretical pinion profile undergoes a displacement (P.sub.1, P.sub.2) at the same time at right angles to the imaginary axis of rotation in the direction towards the toothing of the face gear.