Abstract:
A concentrator tube comprises a reflector portion having two walls; and an aperture closing an opening to the reflector portion. The aperture and the reflector portion extend longitudinally. The aperture is substantially flat relative to curvature of the reflector portion.
Abstract:
A modular and portable motorized solar concentrator assembly for production of ethanol, electricity, potable water, or combinations thereof can include a housing and a reflective array. An airtight chamber is formed in the reflective array, and ancillary reflective concentrators can provide addition solar radiation thereto. An inert gas in the airtight chamber can form a low-humidity and air-free environment. The portable motorized solar concentrator assembly can engage an electricity producing plant, a desalination plant, an ethanol producing plant, or combinations thereof.
Abstract:
A receiver system for a Fresnel solar plant is provided that includes an absorber tube defining a longitudinal direction, a mirror array that runs parallel to the longitudinal direction and is used for concentrating light beams onto the absorber tube, and a support frame for the absorber tube and the mirror array. A first suspension for holding the absorber tube and a second suspension for holding the mirror array or at least parts of the mirror array are independently mounted on the support frame. The first suspension has first compensation device while the second suspension has second compensation device. The first and second compensation devices allow for different expansions of the absorber tube and the mirror array or at least parts of the mirror array in the longitudinal direction.
Abstract:
A hybrid solar system and method of manufacturing same are described. A solar energy apparatus comprises at least one enveloping tube, at least one heat pipe evaporator, at least one reflector device, at least one reflective filter, and at least one photovoltaic device. The enveloping tube has an outer surface made of transmissive material and an evacuated internal atmosphere. The heat pipe evaporator runs longitudinally within the at least one collector tube. The reflector device is fixedly attached to an inner surface of the enveloping tube such that the reflector device is tilted relative to the normal axis of the enveloping tube, and the reflective filter is located such that light reflecting off the reflector device is directed to the reflective filter. The photovoltaic device is located such that at least a first portion of the light filtered by the reflective filter may be directed to the photovoltaic device and the portion incompatible with the photovoltaic device may be captured within the at least one heat pipe.
Abstract:
In a “once-through” configuration, feedwater is pressurized, preheated, and evaporated in a series of pipes exposed to concentrated solar energy to produce a water-steam mixture for direct distribution to an industrial process such as enhanced oil recovery or desalination. Active steam quality management, in a preheat mode, vents warm/hot water and low-quality steam to a return vessel where steam is recondensed via contact with water and fed back in as feedwater. In an operating mode, the venting is disabled, and high-quality steam is directed as an outlet stream. Inlet water flowrate and outlet valves are managed to reduce effects of variation in the solar energy. A steam generator continuous piping system uses a single continuous receiver pipe that is illuminated by segmented parabolic mirrors enabled to track the sun to reduce high-temperature fouling. Provisions for steam generator piping recurring maintenance are provided. Low-temperature “overnight” solar field management reduces low-temperature fouling.
Abstract:
A solar reflective condensing device, including a condensing film (2), a face-contour bottom plate (3), and a face-contour focusing support (4). The condensing film (2) is arranged on a top surface of the face-contour bottom plate (3). The face-contour bottom plate (3) is a thin plate, a bottom surface of which is attached to a top surface of the face-contour focusing support (4), and reproduces the shape of the top surface of the face-contour focusing support (4). The face-contour focusing support (4) includes a top optical surface (4a) and a focusing structure (4b) integrated with the face-contour focusing support. The top optical surface (4a) is positioned on the top surface of the face-contour focusing support (4), and a central point of the focusing structure (4b) integrated with the face-contour focusing support is positioned at a focus (f) of the top optical surface (4a).
Abstract:
An automated tracking solar power collector is disclosed herein, the tracking solar powered collector includes at least one solar collector such as a solar concentrator and an actuator coupled to the at least one solar collector. The tracking solar power collector further includes a tracking controller configured to aim the at least one solar collector toward the sun with the actuator; and, a power controller configured to supply power to the actuator based on an energy collected by the at least one solar collector.
Abstract:
Support structure for solar collector, of the type used in cylindrical parabolic collectors to support the cylindrical parabolic reflector and the absorbing tube, characterized in that it comprises a main bearing structure on which a plurality of support arms for the parabolic mirrors are supported, said main bearing structure being formed by two rectangular lattice grids, a top one and another bottom one, in a parallel and overlaying arrangement, linked together by four laterally-disposed mini-lattices, in twos at each end, and by a plurality of external lateral ties bars and internal diagonal tie bars.The present invention provides the main advantages of a reduction in the number of grids needed in the construction of the bearing structure, with a notable reduction in weight and volume for transport whilst maintaining the necessary rigidity of the assembly, with the consequent economic saving.
Abstract:
A machine for tracking the sun's movement and concentrating sunlight consists of a main Frame which pivots in the north and south direction on a base having conduit for a heat medium (a liquid usually of the Glycol family the Main Rrame supports the Mirror Frame that pivots 360 degrees East to West allowing the mirror to focus the sunlight onto the conduit heating the liquid medium producing a very high and concentrated amount of heat during the entire day-light period and can be used for a small business or residential heating. An optional prism can be attached to the mirror frame to focus sun rays onto the conduit for added heat.
Abstract:
An automated tracking solar power collector is disclosed herein, the tracking solar powered collector includes at least one solar collector such as a solar concentrator and an actuator coupled to the at least one solar collector. The tracking solar power collector further includes a tracking controller configured to aim the at least one solar collector toward the sun with the actuator; and, a power controller configured to supply power to the actuator based on an energy collected by the at least one solar collector.