Abstract:
A device for the heat treatment of a product includes a housing, and a conveyor for conveying the product between an inlet of the housing and an outlet of the housing. The conveyor includes a screw which is mounted so as to turn in the housing according to a geometric axis of rotation and comprising an actuator for rotating the screw according to said axis, with ohmic heating of the screw. Accordingly, the housing comprises an envelope consisting of a refractory material through with the screw extends, said envelope being shaped in the form of a tube, the main inner surface of which follows contours of the screw.
Abstract:
The invention relates to a material feeding system (1) for a melter comprising: (i) a substantially horizontal feeding barrel (5) designed to feed solid material through the melter wall (9) into the melt (11) contained in the said melter, and arranged below the level (13) of the melt (11) contained in the melter (30), (ii) said feeding barrel (5) comprising a material input opening (15) and material output opening (17), the material output opening (17) leading into the melt (11) contained in the melter (30), said feeding barrel (5) comprising an internal feeder (20) designed to push solid material (7) loaded through the material input opening (15), in the direction of the longitudinal barrel axis (6) toward the material output opening (17), the end of the internal feeder (20) on the material output side extending at a minimum at a distance from the internal melter surface (19) of two (2) to ten (10) times the diameter of the feeding barrel (5), preferably three (3) to eight (8) times the diameter of the feeding barrel, more preferably three (3) to six (6) times the diameter of the feeding barrel or three (3) to five (5) times the diameter of the feeding barrel (5). The invention further covers a submerged combustion melter equipped with above material feeding system and a process for feeding material into a melter.
Abstract:
Melting plant having a melting chamber which by way of a gas protection hood is separated from the environment, wherein the gas protection hood or another part of the melting chamber encasement has a lead through in which an electrode rod for moving an electrode to be melted is guided in a gas-tight manner by way of a sealing means. Hydraulic or pneumatic equalisation means, for exerting on the electrode rod equalisation forces which are in a proportional correlation with the gas pressure prevailing within the melting chamber are provided so as to compensate for the gas-pressure forces acting on the electrode rod.
Abstract:
A detection wave from a transmitting/receiving means is guided to the interior of a blast furnace via an antenna and a reflecting plate, and when a reflected wave from the surface of a loaded material is reflected by the reflecting plate and received by the transmitting/receiving means, the reflecting plate is rotated together with the antenna, or the reflecting plate is rotated additionally, and the surface profile of the loaded material is measured by scanning the surface of the loaded material in a linear manner or a planar manner during the turning of a chute or for each prescribed turn of the chute. A deposition profile is obtained on the basis of this surface profile and is compared to a predetermined theoretical deposition profile, and the chute is controlled so as to correct the error with respect to the theoretical deposition profile and then which new loaded material is introduced.
Abstract:
A method of fluxing or degassing a molten metal residing as a bath in a furnace. The bath of molten metal includes a bath surface height and the method provides at least one rotating impeller in the molten metal bath to initiate a flow of the molten metal. The flow in the molten metal results in elevating a portion of the molten metal above the bath surface height where at least one of a fluxing agent and an inert gas is introduced into the elevated portion of the molten metal.
Abstract:
A method and to a device for delivering deliverable materials through a hollow chamber that is closed off from the outside air in a pressure-tight manner and that is supplied with materials via a storage container serving as a lock and that ends in the furnace chamber via a connecting tube. The delivery of the materials within the hollow chamber closed off from the outside air in a pressure-tight manner is carried out by means of depressurized mechanical conveyors.
Abstract:
A gypsum dryer/calciner includes a calcining space; a first pipe having an inlet connected to a source of hot gases and an outlet emerging in the calcining space; a second pipe having an inlet connected to a source of gypsum and an outlet emerging in the calcining space, the second pipe being concentric with the first pipe; and a force-feeding screw positioned at least partially in the second pipe, the screw carrying the gypsum along in the calcining space.
Abstract:
A material handling system for moving material from a storage device to a receiver comprises a counter rotating double screw feeder extending from the storage device to the receiver. The counter rotating double screw feeder comprises an outer screw feed member; an inner screw feed member; where the outer screw feed member being positioned in an outer screw feed member tube; and the inner screw feed member being positioned in an inner screw feed member tube. The material is feed from the storage device to the process tube via the outer screw feed member; the inner screw feed member removes gas and byproducts from the receiver.
Abstract:
A method for feeding lime mud into a lime kiln including a rotary kiln shell having an interior between a first end wall and a second end wall, the method including: feeding the lime mud into a flue gas flow in the interior of the rotary kiln shell or in close proximity to the shell to pretreat the lime mud; separating the pretreated lime mud from the flue gas flow; conveying the separated lime mud into the lime kiln, and calcining the separated lime mud in the lime kiln.
Abstract:
A process for recycling composite materials includes the steps of feeding a quantity of composite material composed of at least one polymer and aluminum into at least one first reactor; heating the composite material in a non-oxidizing environment at a temperature sufficient to volatilize the at least one polymer and form a hydrocarbon by-product and aluminum in the at least one first reactor; feeding the aluminum free of the at least one polymer into a second reactor; and heating the aluminum in a non-oxidizing environment at a temperature sufficient to melt the aluminum in the second reactor.