Abstract:
A system of obtaining an aluminium melt including SiC particles for use when moulding vehicle parts, e.g. brake disks, the system comprises a pre-processing tank (2), configured to receive SiC particles and to apply a pre-processing procedure to pre-process the SiC particles; a SiC particle transport member (4) configured to transport the pre-processed SiC particles from the pre-processing tank (2) to a crucible (6) of a melting furnace device (8), and the melting furnace device (8) is configured to receive and melt solid aluminium, e.g. aluminium slabs, and to hold an aluminium melt (10) and to receive said pre-processed SiC particles (12). The system also comprises a tube-like SiC particle mixing arrangement (14) defining and enclosing an elongated mixing chamber (16), the mixing arrangement (14) is configured to be mounted in said crucible (6) and structured to receive into said mixing chamber (16) said pre-processed SiC particles (12) via a first inlet (18) and said aluminium melt (10) via at least one second inlet (20), and to apply a mixing procedure by rotating a rotatable mixing member (22) arranged in said mixing chamber (16) about said longitudinal axis A, wherein said pre-processed SiC particles are mixed together with the aluminium melt in said mixing chamber. The mixing arrangement (14) is provided with at least one outlet (26) to feed out the mixture from said mixing chamber into said crucible.
Abstract:
A melter gasifier of a smelting reduction installation is charged by bringing together coal -containing material in lump form and iron carrier material (which may be hot) before and/or while they enter the melter gasifier. The ratio of the combined amounts of iron carrier material and coal-containing material in lump form is variable. The combined amounts of iron carrier material and coal-containing material in lump form are distributed over the cross section of the melter gasifier by a dynamic distributing device, and the ratio of the combined amounts of the iron carrier material and coal-containing material in lump form is set depending on the position of the dynamic distributing device.
Abstract:
A batch charger for charging batch materials into a glass melting furnace at a level located below the level of the molten glass, including: a body including a barrel and a mechanical system for conveying batch materials, the mechanical system being housed in the barrel; and a head removably fastened to an end of the barrel, and including a slide gate damper, and a tubular connecting part fastened to the slide gate damper and configured to be at least partially inserted into a charging orifice provided in a wall of a tank of the furnace, the slide gate damper and the connecting part including a system of internal ducts that can be connected to a source of coolant. A melting installation and a process can use such a batch charger.
Abstract:
The present invention provides a method for producing a granular metallic iron in which an adhesion inhibitor leveler, an agglomerate leveler, a discharger, and the physical state of materials present on the hearth are optimized to thereby enable agglomerate to be spread in a single layer. The agglomerate hence is evenly heat-treated to enable high-quality granular metallic iron to be produced in satisfactory yield.The present invention relates to a method for producing a granular metallic iron, which comprises leveling an adhesion inhibitor fed to the hearth of a moving-bed type hearth reducing melting furnace, feeding an agglomerate including an iron oxide-containing material and a carbonaceous reducing agent onto the adhesion inhibitor, leveling the agglomerate fed onto the adhesion inhibitor, subsequently heating the agglomerate to reduce and melt the iron oxide contained in the agglomerate to produce a granular metallic iron, and discharging the produced granular metallic iron using a screw type discharger, wherein the adhesion inhibitor fed to the hearth is evenly leveled using a screw type adhesion inhibitor leveler so that the leveled adhesion inhibitor has a flatness of 40% or less of an average particle diameter of the agglomerate, and the agglomerate fed onto the adhesion inhibitor is evenly laid using a screw type agglomerate leveler so that the agglomerate forms a single layer.
Abstract:
The inventive subject matter is directed toward a pyrolytic waste treatment system comprising a pyrolysis chamber having a chamber wall with a hole through which a shaft passes. An insulating mechanism is used at the hole to inhibit heat from escaping through the opening in the chamber wall.
Abstract:
The invention relates to an apparatus for producing metals and/or primary metal products, in particular pig iron and/or primary pig iron products, in which a metal-containing charge material, in particular in fine particle form, is introduced, using pneumatic conveying, by means of a carrier gas stream, in the form of a stream of medium formed from the charge material and the carrier gas stream, into a melting unit, in particular a melter gasifier, for further processing. According to the invention, the charge material is introduced after the carrier gas stream has been separated off and separately at at least two introduction points, so that at least two partial quantities of the charge material can be introduced independently of one another and continuously or in stacked form.
Abstract:
A method for manufacturing sponge iron and an apparatus for charging in the method are disclosed. Iron oxide powder and reducing-agent powder are charged such that alternating layers of the iron oxide powder and the reducing-agent powder are formed and such that each of the layers is in the form of a helix, and then a reduction treatment is performed. The method has not only high reaction efficiency of a gas, high quality, and high productivity, but also the advantage for a production adjustment because the amount of charge can be adjusted without the limitation of a reduction time. The molar ratio of the carbon content in the reducing agent to the oxygen content in the iron oxide in the reaction container is preferably 1.1 or more.
Abstract:
In order to apply reclaimed oil to surfaces of empty cans each formed from a steel material and an aluminum material and having a coated surface and to heat the oil-applied empty cans, an empty-can treatment system includes a rotary kiln for heating the empty cans; a screw-type conveying apparatus for conveying the empty cans to the rotary kiln; and a reclaimed oil tank from which reclaimed oil is fed so as to be applied to the empty cans conveyed by means of the screw-type conveying apparatus. The screw-type conveying apparatus includes a casing pipe allowing the empty cans to pass therethrough; and a shaft portion disposed within the casing pipe and having a screw portion formed on the circumferential surface thereof. The shaft portion is formed of a pipe having oil discharge holes formed thereon at predetermined intervals.
Abstract:
A carbon powder inlet and a graphite powder collecting are oppositely arrange on a furnace body. At least a pair of electrodes are oppositely arranged in the furnace body with respect to a graphitizing area at an intermediate position between the inlet and the collecting port and are engaged with different timing.
Abstract:
In order to avoid damage to the inner walls of the arc furnace (1) and a reduction of the electric power when material (5) to be melted has been partly burned down in an arc furnace (1), additives (10) are fed to the filling opening of a hollow electrode (7) by means of a loose-material conveyor (25) during this critical melting phase. An arc (6) between the hollow electrode (7) and a melt (4) in the arc furnace (1) is thereby shortened. A loose-material container (9) is arranged at the end of the loose-material conveyor (25) at a distance from the electrode and can easily be separated from the hollow electrode (7) in order to permit the tilting of the arc furnace (1) to empty out the melt (4). Problematic waste materials which are to be disposed of, such as for example filter dust, can be added to the additives (10).