Abstract:
The present invention relates to a method for producing a heat exchanger. The heat exchanger comprising at least one heat conducting conduit for passage of a first medium and at least one block of an open cell porous medium for passage of a second medium. The method comprises providing at least one groove in the open cell porous medium. Thereafter, the porous medium is bent in a direction such that at least part of the grooves are opened and heat conducting conduits are applied in this at least one opened groove. Thereafter, the porous medium is rebend such that the heat conducting conduits are locked in said open cell porous medium.
Abstract:
A heat-conducting assembly is mounted between a heat-generating element and a heat-dissipating plate. The heat-conducting assembly includes a base, a first heat-conducting block, a second heat-conducting block and an elastic element. The base is attached on the heat-generating element. The first heat-conducting block is provided on the base. The first heat-conducting block has a first slope and a fixing groove. The second heat-conducting block abuts on the heat-dissipating plate. The second heat-conducting block has a second slope and a locking groove. The second slope is slidingly disposed on the first slope. The elastic element has a fixed end and a buckling end formed on one side of the fixed end. The fixed end is fixed in the fixing groove, and the buckling end is buckled into the locking groove. Via this arrangement, the heat-conducting efficiency of the heat-conducting assembly of the present invention can be improved.
Abstract:
A heat exchanger with a simple configuration and having a high strength is disclosed. The heat exchanger is configured by sandwiching both sides of a core created by layering tubes and corrugated fins by a pair of side plates and brazing the connecting bar on the ends of each tube and side plate with the bar inserted into header. The header and side plate are coupled with a approximately U-shape coupling member in addition to the connecting bar 13. This coupling member is configured of an arc section that covers the header and an arm section that has a locking section to lock onto a -shaped bend section of side plate. The arc section is fixed onto header with brazing, and arm section is fixed to side plate. The vibration conveyed from the bracket to the side plate is conveyed to the header via the connecting bar and coupling member, and the strength of the coupling sections of the header and side plate is much higher than the strength found in conventional structures.
Abstract:
A nuclear steam generator modularized wrapper assembly comprising at least two separate generally cylindrical wrapper modules with tube support plates therewithin are assembled in stacked relation and joined within the nuclear containment building, the assembled modules then being placed in the shell with the tube apertures in the tube support plates being aligned with the tube apertures in the tube sheet, and a plurality of adjustable spacer means fixed to the outer circumference of the wrapper assembly are provided and are adjusted to vary the width of the space in the annulus between the wrapper and shell at various locations to lock the assembly in place with axial alignment of all of the apertures in the tube support plates and tube sheets. The method of effecting the replacement of a wrapper assembly in the field within the nuclear containment building includes providing tube aperture keying means at selected locations on the upper surface of the tube sheet to promote alignment of all the tube apertures in the various parts, the keying means being removed after the adjustment of the spacer means in the annulus.
Abstract:
A method of manufacturing a grill-type support suitable to act as a support and tube spacing member for steam generators (particularly natural circulation steam generators for pressure water reactors), heat exchangers and the like, wherein the actual lattice of the grid comprises strips having a certain thermal expansion, whereas the frame is made of another material having different thermal expansion, and during assembling the outer frame is connected to the strips, so as to be fast therewith and remains so for all the time required for manufacture, transport and erection, whereas as soon as said generator is set to work said strips of different material can slide relative to said frame, so that, said frame while surrounding and supporting such strips, allows a different thermal expansion for said central strips and frame.
Abstract:
The present invention relates to a method for producing a heat exchanger. The heat exchanger comprising at least one heat conducting conduit for passage of a first medium and at least one block of an open cell porous medium for passage of a second medium. The method comprises providing at least one groove in the open cell porous medium. Thereafter, the porous medium is bent in a direction such that at least part of the grooves are opened and heat conducting conduits are applied in this at least one opened groove. Thereafter, the porous medium is rebend such that the heat conducting conduits are locked in said open cell porous medium.
Abstract:
The present invention relates to a method for producing a heat exchanger. The heat exchanger comprising at least one heat conducting conduit for passage of a first medium and at least one block of an open cell porous medium for passage of a second medium. The method comprises providing at least one groove in the open cell porous medium. Thereafter, the porous medium is bent in a direction such that at least part of the grooves are opened and heat conducting conduits are applied in this at least one opened groove. Thereafter, the porous medium is rebend such that the heat conducting conduits are locked in said open cell porous medium.
Abstract:
A plug assembly for a tube includes a tapered wedge and a sleeve. The sleeve fits over the wedge and is placed in a tube. Relative movement of the wedge and the sleeve causes the sleeve to expand and plug the tube. The exterior surface of the wedge and the interior surface of the sleeve include annular grooves. One or more compression rings in either the grooves in the sleeve or wedge permit motion of the sleeve relative to the wedge only toward the large diameter portion of the wedge. This prevents the sleeve from separating from the wedge after being installed in a tube.