Abstract:
The system includes at least one light source generating light energy having a corresponding wavelength. The system's sensor is based on an optical interferometer that receives light energy from each light source. The interferometer includes a free-space optical path disposed in an environment of interest. The system's sensor includes an optical device disposed in the optical path that causes light energy of a first selected wavelength to continue traversing the optical path whereas light energy of at least one second selected wavelength is directed away from the optical path. The interferometer generates an interference between the light energy of the first selected wavelength so-traversing the optical path with the light energy at the corresponding wavelength incident on the optical interferometer. A first optical detector detects the interference. At least one second detector detects the light energy at the at least one second selected wavelength directed away from the optical path.
Abstract:
A method of visually measuring the brightness of ambient lighting around a display device is disclosed. In this method, first, a reference brightness of the display device is determined according to a type of display device. Thereafter, information about locations where the display device is used is received from the user, and illuminance values of the display device corresponding to brightness stages are set based on the reference brightness and the location information. Then, a reference brightness is converted into each of the illuminance values corresponding to each of the brightness stages. The converted images with the illumination values corresponding to the brightness stages are displayed to the user, and an image that has a brightness value nearest to the brightness of ambient lighting is selected, and the brightness value of the selected image is determined as the brightness of ambient lighting.
Abstract:
An optical component comprises a thin film of an electrically controllable birefringent material confined between substantially planar surfaces. A respective electrode structure is provided on each of the surfaces, each electrode structure being patterned such that an electric field applied across the film by means of electrode structures, when a voltage is applied therebetween, causes modulation of the refractive index of the material such that the wavefront of electromagnetic radiation incident of the component and transmitted through the thin film is divided into Fresnel zones.
Abstract:
A calibration device 21 according to the present invention is a member used for white calibration of an optical characteristic measuring apparatus 1 for measuring an optical characteristic of a specimen arranged to close a measuring opening and is used together with a spacer 24. Accordingly, such a calibration device 21 can perform more accurate white calibration by preventing formation of an interference pattern by the spacer 24.
Abstract:
A calibration device 21 according to the present invention is a member used for white calibration of an optical characteristic measuring apparatus 1 for measuring an optical characteristic of a specimen arranged to close a measuring opening and is used together with a spacer 24. Accordingly, such a calibration device 21 can perform more accurate white calibration by preventing formation of an interference pattern by the spacer 24.