Abstract:
Disclosed is an entrance system having an image angle of 180.degree. suite for a radiation detector for detecting differing wavelengths of sunlight, comprising a hemispherical shell of light transmitting material; a tube of light transmitting material extending coaxially from the hemispherical shell; a granulated light scattering medium containing inside the hemispherical shell; and a stepped body of light transmitting material inserted into the tube, the stepped body having an end which terminates in at least three steps and which abuts against the granulated medium and seals the medium in the hemispherical shell.
Abstract:
A method and apparatus for use in detecting conditions related to a plant are disclosed. More particularly, in accord with the invention, in the method and apparatus are provided a first sensing means for generating an electrical signal corresponding to the light level in the area surrounding a plant, an indication means comprising a meter for providing an indication or reading corresponding to the electrical signal generated by the sensing means, and a reference source in the form of a chart or table for relating the aforesaid indication or reading to a preselected reading associated with the particular plant.In a further aspect of the invention, a second sensing means is additionally provided for sensing another condition of the plant and a coupling means is provided for selectively coupling the first and second sensing means to the meter of the indication means. Moreover, in this form of the invention, a second reference source is provided for presenting reference readings corresponding to the condition being sensed by the second sensing means.Also disclosed is a housing for the apparatus which is designed to have storage capabilities and to permit easy use thereof.
Abstract:
Electronic displays encounter visibility issues due to varying ambient light conditions. An ambient light sensor can be provided to sense ambient light and dynamically adjust display brightness to compensate for changes in ambient light. A wave guide for improving angular response in a light sensor is provided.
Abstract:
A solar sensor that utilizes a blocking element and curved reflective element between the sun and a photo-sensitive electronic device to provide high signal levels and the ability to shape the angular response of the overall sensor. A particular angular response can be achieved by combining the attenuating affects of the blocking element with the increased response affects of the curved reflector. These two elements may be combined into one physical structure, or may be separate. Further, the present invention contemplates the use of multiple blocking elements and multiple reflectors.
Abstract:
An optical pathway of a scanning spectral radiometer for a continuous monitoring of spectral radiation employs a diffuser having an upper source directed surface and a lower sensor directed surface for diffusing radiation incident on the upper surface and transmitting the diffused radiation. An occulting ring laterally surrounds the diffuser. A filter receives the diffused radiation from the light diffuser and passes a predetermined wavelength range. A photodetector is positioned to receive the filtered radiation. The photodetector is positioned at one end of an optical path, with a diffuser being positioned at the other end of the optical path. A collimator is provided between the diffuser and the photodetector, with the optical path extending through the collimator.
Abstract:
An infrared collector for use in communications systems. The infrared collector employs a concentrator which concentrates infrared radiation received from some directions more than others. The concentrator is made of a dielectric material which is substantially transparent to infrared radiation and has a shape which is convex above a base plane determined by the top surface of an infrared radiation detector and in which any ray which connects any part of the top surface of the detector to any part of the concentrator above the base plane intersects the surface of the concentrator at an angle less than the critical angle for the material from which concentrator is made. The amount of concentration from a given direction is controlled by the curvature of the collector. The less a portion of the surface is curved, the less infrared radiation normal to the less-curved portion is concentrated. The collector may be used in environments where there is a predominant direction from which infrared noise is received in the collector which is different from the direction from which infrared communications signals are received in the collector.
Abstract:
A testing apparatus for making photometric measurements of transmission and reflectance of large parts uses a light beam having a spatially ill-defined energy distribution. A detector for receiving the light beam has a spatial variation in its sensitivity over its sensing area. A diffuser is provided which is disposed in the light beam for intercepting the light beam before it strikes the detector. The diffuser is formed of a white-like plastic and has a thickness which decreases progressively towards the outer edges of the same to compensate for the fall-off in sensitivity of the detector to rays closer to the outer margins of the diffuser or away from the center of the diffuser. The diffuser is formed in two portions in which a portion of the diffuser is in substantially closer proximity to the detector than the other portion to minimize the directional sensitivity of the detector.The apparatus uses an invisible beam which is aimed by a coaxial visible beam. Measurements of transmission and reflectance are made in quick succession by moving the sample on a carriage and using a movable mirror assembly. The invisible beam is aimed separately for each of the two measurements.
Abstract:
A sunlight lens portion includes a low elevation angle surface for capturing light at low elevation angles, an opposing surface which is adjacent to the low elevation angle surface and which faces a sunlight detection element, and a high elevation angle surface for capturing light at high elevation angles. Further, the sunlight lens portion includes a reflection surface adjacent to the high elevation angle surface and the opposing surface. Accordingly, a portion of sunlight entering the sunlight lens portion is reflected by the reflection surface and guided to the sunlight detection element, therefore it is possible to broaden a range of peak sunlight amount detected by the sunlight detection element. Due to this, it is possible to reduce an effect of the angle of inclination of the windshield on the elevation angle characteristic of the sunlight sensor.
Abstract:
There is described an optical radiation sensor device for detecting radiation in a radiation field. The device comprises a sensor element capable of detecting and responding to incident radiation from the radiation field and a radiation window interposed between the sensor element and the radiation field. The radiation window comprises a non-circular (preferably square) shaped radiation transparent opening. The optical radiation sensor device can be used in a so-called dynamic manner while mitigating or obviating the detection errors resulting from the use of a circular-shaped attenuating aperture and/or angular (even minor) misalignment of the sensor device with respect to the array of radiation sources when multiple such circular-shaped attenuating apertures are used.