摘要:
A new apparatus for monitoring fine particle concentration in an exhaust system of a combustion engine has a part that extends into the exhaust system, and a housing that includes structure that attaches and seals the apparatus to the exhaust system through a single opening in a wall of the exhaust system. A gas inlet in the housing provides a measurement flow into a particle measurement sensor inside the housing. At least a fraction of the particles entering the particle measurement sensor are charged, and at least a fraction of the current carried by the charged particles are detected. A gas outlet in the housing carries the measurement flow away from the particle measurement sensor. The structure that attaches the apparatus to the exhaust system has one electrical connector that provides power to the sensor, and another electrical connector that transmits the electrical signal created by the sensor.
摘要:
A storage box 100, on the bottom surface of which are attached casters 101, has a heater 102 positioned on the bottom surface thereof and left-hand side and the right-hand side interior spaces being divided by a partition plate 103, wherein nine (9) sampling bags 104 . . . in total can be received within a wide space at the right-hand side thereof. On one side of the storage box 100 is provided a connector unit 110. This connector unit 110 is constructed with an elevating block 112 hooking on guide rails provided in a direction of up and down, and the elevating block 112 is biased upward with a gas spring 113. In guide holders 112b of the elevating block 112 are provided guides 115 . . . in the same number as the number of the sampling bags 104, and into each guide 115 is inserted a flexible conduit 116 made from stainless steel, in a such manner that it can be drawn out therefrom. Heaters and warm air passages are provided to prevent the condensation of moisture within a sampled gas under a range of operating conditions.
摘要:
An aerosol detection system for measuring particle number distribution with respect to particle dimension in an aerosol sample. The system includes an alternating dual-bag sampler, a radially classified differential mobility analyzer, and a condensation nucleus counter. Pressure variations in sampling are compensated by feedback control of volumetric flow rates using a plurality of flow control elements.
摘要:
A system is provided in an exhaust emission sampling system for controlling a flow controller in order to compensate for the effects of changing water vapor content in a diluted sample having a predetermined dilution ratio. A water measuring device such as a relative humidity sensor generates a water vapor signal based on the amount of water vapor in the diluted sample. The water vapor signal is then processed within a control unit to obtain a value for the amount of water in the diluted sample. A control signal is generated by the control unit based on the amount of water vapor, flow rate of the exhaust emissions, and also, on the type of fuel used in the combustion process to control the flow controller which is, preferably, a mass flow controller. A second system is provided in an exhaust emission analyzing system for determining a final amount of pollutants also compensated for the effects of changing water vapor content in the exhaust emissions. The control unit not only processes the water vapor signal from the sensor to obtain a value for the amount of water vapor in the diluted sample as in the first embodiment, but also generates a correction factor based on the value. The correction factor is then utilized by a computer to calculate a final amount of the pollutants based on the correction factor and a preliminary amount of pollutants determined by analyzers of the exhaust emission analyzing system.
摘要:
A sampling probe and method for its use in which a flow amplifier utilizing the Coanda wall attachment effect has attached to its inlet an isokinetic sampling nozzle and has attached to its outlet a straight tube so that upon passing a flow of compressed, motive gas through the throttling inlet of the flow amplifier, a flow of sample gas is induced from a gaseous external environment of the probe and the motive gas provides a barrier between the sample gas and the wall of the flow amplifier and attached tube. In an embodiment of the invention the motive gas is a dry gas at elevated temperature which reduces moisture content of samples of moist gas environments.
摘要:
An apparatus for determining the total mass of exhaust gas constituents emitted from an internal or external combustion engine, the apparatus having a through-flow duct to receive the exhaust gases and into which is introduced dilution air for thorough mixing with the exhaust gases. The apparatus has means for measuring not only the total mixed flow but also the total flow of dilution air introduced to the duct. Unique means is utilized for extracting and measuring a proportional sample of said mixed flow. Collection and measuring apparatus is used to determine the concentration of dilution air constituents as well as the combined concentration of gaseous constituents in the mixed flow. Utilizing the above two flow measurements and the two constituent concentration measurements, the total mass of exhaust gas from the engine is simply determined on a theoretically correct basis.
摘要:
Provided are devices and methods for monitoring flow rate in aerosol particle counters. The particle sensor has a particle counter, a flow measurement orifice comprising a differential pressure sensor for measuring differential pressure (DP) across the flow measurement orifice during particle sensor operation and a critical flow orifice. A vacuum source pulls ambient gas through each of the particle counter, flow measurement orifice and critical flow orifice. An atmospheric pressure sensor measures atmospheric pressure (AP) and a bench pressure sensor measures pressure in the particle sensor (BP). The output from the sensors is used to identify a flow condition, such as by a monitor operably connected to each of the differential pressure sensor, atmospheric pressure sensor and bench pressure sensor. In this manner, deviation in flow rate from a target flow rate is readily monitored without the need for expensive sensors or other flow-controlling components.
摘要:
Provided are devices and methods for monitoring flow rate in aerosol particle counters. The particle sensor has a particle counter, a flow measurement orifice comprising a differential pressure sensor for measuring differential pressure (DP) across the flow measurement orifice during particle sensor operation and a critical flow orifice. A vacuum source pulls ambient gas through each of the particle counter, flow measurement orifice and critical flow orifice. An atmospheric pressure sensor measures atmospheric pressure (AP) and a bench pressure sensor measures pressure in the particle sensor (BP). The output from the sensors is used to identify a flow condition, such as by a monitor operably connected to each of the differential pressure sensor, atmospheric pressure sensor and bench pressure sensor. In this manner, deviation in flow rate from a target flow rate is readily monitored without the need for expensive sensors or other flow-controlling components.
摘要:
A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.
摘要:
A fluid sampling system and a method thereof are provided. The fluid sampling system is provided with a plurality of sampling channels, each of the sampling channels comprising a sampling line having an inlet, a regulated outlet, and first and second calibrated flow orifices connected in series between the inlet and outlet. Each of the sampling channels also comprises a controllable derivation line connected between the first and second orifices, for deviating fluid from the sampling line. The fluid sampling system is also provided with a connecting line for connecting together the outlets of the sampling lines. The connecting line has a main regulated outlet for providing a fluid sample. The fluid sampling system also comprises control means for controlling pressures between first and second orifices of all of the sampling lines by means of the controllable derivation lines, thereby increasing pressure between first and second orifices of one of the sampling lines which is then selected to provide the fluid sample to the outlet of the connecting line, and decreasing pressure between first and second orifices of remaining sampling lines to back purge the remaining sampling lines. Such a fluid sampling system does not contaminate the sample by the product that is out gassed or adsorbed by the control means used to control fluid flows.