Abstract:
The invention relates to a device for producing CO2, N2 and/or SO2 from a sample for a quantitative analysis of the sample, comprising a reactor structure and metals acting in an oxidizing manner or metal oxides in the reactor. According to the invention, the reactor structure has at least two zones through which the sample can flow, which is to say a first zone with reactor metal and reservoir metal, or only reactor metal, and following the first zone, a second zone with reactor metal and reservoir metal, or only reservoir metal, wherein both metals can form oxides, and wherein the ratio of the reactor metal to the reservoir metal in the first zone is greater than in the second zone.
Abstract:
A method and apparatus for combustion analysing a sample in a combustion analyzer (120,160,180), where the sample comprises a proportion of sulphur. The sample is supplied to the combustion analyzer and combusted to produce combustion products, comprising a yield of sulphur dioxide for detection. Nitrogen monoxide or a source of nitrogen monoxide is supplied to the combustion analyzer to improve the yield of sulphur dioxide in the combustion products. The yield improver may be supplied before and/or during the combusting step. A proportion of yield improver is preferably greater than the (expected) proportion of sulphur. Ozone may be supplied to the combustion products to convert at least a proportion of any nitrogen monoxide in the combustion products to nitrogen dioxide, before detection.
Abstract:
Articles of manufacture and methods of making and using same concern a container having an internal space and a passivated internal metal surface. The container contains a composition of an acid gas and a balance gas contained within the internal space and in contact with the passivated internal metal surface. The stability of the acid gas concentration over time is enhanced.
Abstract:
The present invention generally relates to nucleic acid-based sensors and methods for detecting volatile analytes. More particularly, this invention relates to nucleic acid-based optical sensors, sensor arrays, sensing systems and sensing methods for intelligent sensing and detection of unknown materials by way of real-time feedback and control of sampling conditions.
Abstract:
Solid phase methods for the identification of an analyte in a biological medium, such as a body fluid, using bioluminescence are provided. A chip designed for performing the method and detecting the bioluminescence is also provided. Methods employing biomineralization for depositing silicon on a matrix support are also provided. A synthetic synapse is also provided.
Abstract:
The present invention is a method and apparatus for monitoring, preferably in real time, the physical or chemical conversion of a grain material. The method employs multivariate analysis of a collected sample. In a preferred embodiment a steeping conversion is monitored by multicomponent chemical analysis of the steepwater.
Abstract:
The present invention provides a method and apparatus for accurately determining weight loss of a sample during heating in a furnace. The method includes the steps of placing a sample in a heated furnace, heating the sample while measurements of sample weight are made, determining rate function from the sample weight measurements, producing a weight loss correction factor using the rate function and using the weight loss correction factor to obtain a corrected weight loss for the sample.
Abstract:
The present invention provides a method and apparatus for accurately determining weight loss of a sample during heating in a furnace. The method includes the steps of placing a sample in a heated furnace, heating the sample while measurements of sample weight are made, determining rate function from the sample weight measurements, producing a weight loss correction factor using the rate function and using the weight loss correction factor to obtain a corrected weight loss for the sample.
Abstract:
An optical sensor is proposed for determining gases in gas mixtures, especially for determining one gas component in the air, having a sensitive layer exposed to the gas and having a means for detecting a change in an optical property of the sensitive layer. The sensitive layer of the sensor contains a phosphorus or nitrogen-containing base having numerous and/or long-chain alkyl groups for the pH adjustment of the sensitive layer.
Abstract:
Mass flow controllers are respectively placed in the middle of a hydrogen gas tube and air tube connected to a FPD. The flow controllers are controlled to supply hydrogen and oxygen from the nozzle to achieve the optimum mixture rate of hydrogen and oxygen for combustion of each target component in a sample. Since the mixture rate of hydrogen gas and air is optimum for each target component, the quantity of light emitted by the combustion increases and detection of each target component improves.