Abstract:
Cloud-based integrated yield/equipment data processing system for collecting and analyzing integrated tool-related data (cause data) and material-related data (effect data) pertaining to at least one material processing tool and at least one material is disclosed. In an embodiment, the tool-related data is correlated with the material-related data and the correlated tool-related data and material-related data is employed by logic to perform, using a cloud computing approach, at least one of root-cause analysis, prediction model building and tool control/optimization.
Abstract:
In accordance with an embodiment, a method for exception handling comprises accessing an exception type for an exception, filtering historical data based on at least one defined criterion to provide a data train comprising data sets, assigning a weight to each data set, and providing a current control parameter. The data sets each comprise a historical condition and a historical control parameter, and the weight assigned to each data set is based on each historical condition. The current control parameter is provided using the weight and the historical control parameter for each data set.
Abstract:
Systems, methods, and computer programming products for self-learning order dressing rules applied to manufacturing products in accordance with received product specifications. The translation from commercial characteristics to manufacturing characteristics of the product being manufactured are learned and adjusted to meet the specifications for quality required by the provided commercial characteristics. Reinforcement learning models learn from the quality characteristics of produced products by applying positive scores when the commercial to manufacturing characteristic translation is on-specification, otherwise a penalty is applied when an off-spec product is produced. Digital twins of manufacturing equipment, simulated in real time, provide insight and recommendations for achieving correct quality characteristics. Sensors in each device or within the surrounding environment help digital twins to measure operational performance and lifecycle of the manufacturing equipment against historical baselines. Reinforcement models dynamically adjust equipment settings for producing products to account for equipment performance degradation over time and changes in operation performance.
Abstract:
Integrated yield/equipment data processing system for collecting and analyzing integrated tool-related data (cause data) and material-related data (effect data) pertaining to at least one material processing tool and at least one material is disclosed. In an embodiment, the tool-related data is correlated with the material-related data, and the correlated tool-related data and material-related data is employed by logic to perform at least one of root-cause analysis, prediction model building and tool control/optimization. By integrating cause-and-effect data in a single platform, the data necessary for performing, for example, automated problem detection (e.g., automated root cause analysis) and prediction, is readily available and correlated, which for example shortens the cycle time to detection and facilitates efficient and timely automated tool management and control.
Abstract:
An intelligent sheet metal bending system is disclosed, having a cooperative generative planning system. A planning module interacts with several expert modules to develop a bending plan. The planning module utilizes a state-space search algorithm. Computerized methods are provided for selecting a robot gripper and a repo gripper, and for determining the optimal placement of such grippers as they are holding a workpiece being formed by the bending apparatus. Computerized methods are provided for selecting tooling to be used by the bending apparatus, and for determining a tooling stage layout. An operations planning method is provided which allows the bending apparatus to be set up concurrently while time-consuming calculations, such as motion planning, are performed. An additional method or system is provided for positioning tooling stages by using a backstage guide member which guides placement of a tooling stage along the die rail of the bending apparatus. A method is provided for learning motion control offset values, and for eliminating the need for superfluous sensor-based control operations once the motion control offset values are known. The planning system may be used for facilitating functions such as design and assembly system, which may perform designing, costing, scheduling, and/or manufacture and assembly.
Abstract:
In accordance with an embodiment, a method for exception handling comprises accessing an exception type for an exception, filtering historical data based on at least one defined criterion to provide a data train comprising data sets, assigning a weight to each data set, and providing a current control parameter. The data sets each comprise a historical condition and a historical control parameter, and the weight assigned to each data set is based on each historical condition. The current control parameter is provided using the weight and the historical control parameter for each data set.
Abstract:
An apparatus and method are provided for integrating an intelligent manufacturing system with an expert sheet metal planning and bending system. The intelligent manufacturing system manages and distributes part design and manufacturing information throughout the locations of a production facility. The expert planning system includes a plurality of expert modules for proposing a bending plan, including bend sequence and tooling selections, and robot motion planning and repositioning. Through the various features and aspects of the present invention, an operator can selectively modify and adapt these integrated systems for particular bend applications, including robot-based and human assisted bending operations.
Abstract:
An apparatus and method are provided for integrating an intelligent manufacturing system with an expert sheet metal planning and bending system. The intelligent manufacturing system manages and distributes part design and manufacturing information throughout the locations of a production facility. The expert planning system includes a plurality of expert modules for proposing a bending plan, including bend sequence and tooling selections, and robot motion planning and repositioning. Through the various features and aspects of the present invention, an operator can selectively modify and adapt these integrated systems for particular bend applications, including robot-based and human assisted bending operations.
Abstract:
A method for adjusting a data set defining a set of process runs, each process run having a set of data corresponding to a set of variables for a wafer processing operation is provided. A model derived from a data set is received. A new data set corresponding to one process run is received. The new data set is projected to the model. An outlier data point produced as a result of the projecting is identified. A variable corresponding to the one outlier data point is identified, the identified variable exhibiting a high contribution. A value for the variable from the new data set is identified. Whether the value for the variable is unimportant is determined. A normalized matrix of data is created, using random data and the variable that was determined to be unimportant from each of the new data set and the data set. The data set is updated with the normalized matrix of data.
Abstract:
An intelligent sheet metal bending system is disclosed, having a cooperative generative planning system. A planning module interacts with several expert modules to develop a bending plan. The planning module utilizes a state-space search algorithm. Computerized methods are provided for selecting a robot gripper and a repo gripper, and for determining the optimal placement of such grippers as they are holding a workpiece being formed by the bending apparatus. Computerized methods are provided for selecting tooling to be used by the bending apparatus, and for determining a tooling stage layout. An operations planning method is provided which allows the bending apparatus to be set up concurrently while time-consuming calculations, such as motion planning, are performed. An additional method or system is provided for positioning tooling stages by using a backstage guide member which guides placement of a tooling stage along the die rail of the bending apparatus. A method is provided for learning motion control offset values, and for eliminating the need for superfluous sensor-based control operations once the motion control offset values are known. The planning system may be used for facilitating functions such as design and assembly system, which may perform designing, costing, scheduling, and/or manufacture and assembly.