Abstract:
An apparatus includes an emitter electrode including a phosphorus doped diamond layer with low work function. The apparatus further includes a collector electrode and a vacuum gap disposed between the emitter and the collector. The collector has a work function of 0.84 eV or less.
Abstract:
An apparatus includes an emitter electrode including a phosphorus doped diamond layer with low work function. The apparatus further includes a collector electrode and a vacuum gap disposed between the emitter and the collector. The collector has a work function of 0.84 eV or less.
Abstract:
A thermionic electron emitter/collector includes a substrate and a doped diamond electron emitter/collector layer on the substrate. The doped diamond electron emitter/collector layer has at least a first and a second doping concentration as a function of depth such that the first doping concentration is different from the second doping concentration.
Abstract:
Components for use in vacuum electron devices are fabricated from highly oriented pyrolytic graphite (HOPG) and exhibit excellent thermal conductivity, low sputtering rates, and low ion erosion rates as compared to conventional components made from copper or molybdenum. HOPG can be reliably brazed by carefully controlling tolerances, calculating braze joint material volume, and applying appropriate compression during furnace operations. The resulting components exhibit superior thermal performance and enhanced resistance to ion erosion and pitting.
Abstract:
An apparatus includes an emitter electrode including a phosphorus doped diamond layer with low work function. The apparatus further includes a collector electrode and a vacuum gap disposed between the emitter and the collector. The collector has a work function of 0.84 eV or less.
Abstract:
Components for use in vacuum electron devices are fabricated from highly oriented pyrolytic graphite (HOPG) and exhibit excellent thermal conductivity, low sputtering rates, and low ion erosion rates as compared to conventional components made from copper or molybdenum. HOPG can be reliably brazed by carefully controlling tolerances, calculating braze joint material volume, and applying appropriate compression during furnace operations. The resulting components exhibit superior thermal performance and enhanced resistance to ion erosion and pitting.
Abstract:
A thermionic electron emitter/collector includes a substrate and a doped diamond electron emitter/collector layer on the substrate. The doped diamond electron emitter/collector layer has at least a first and a second doping concentration as a function of depth such that the first doping concentration is different from the second doping concentration.