Abstract:
A magnetron has an anode cylinder, a plurality of vanes arranged radially within the anode cylinder, a magnetic piece disposed at an open end section of the anode cylinder, an anode vacuum container including a metal container disposed to cover an upper surface of the magnetic piece, a cathode disposed along a central axis of the vacuum container, and an antenna externally discharging microwaves. The magnetic piece and the metal container are placed, in that order, on a shelf formed inwardly on a thin end section projecting from the open end section of the anode cylinder. When tightly welding the thin end section, a predetermined number of projections, projecting inwardly from the thin end section of the anode cylinder, loosely secure an outer perimeter bend of the metal container. The metal container is then accurately tightly welded to the anode cylinder without the metal container shifting off-center.
Abstract:
A magnetron comprises a cathode and an anode, the anode comprising a substantially cylindrical anode block having a plurality of internal resonant cavities. A pair of enclosed channels extend about the block, a coolant inlet being present in one of the channels and a coolant outlet being present in the other of the channels, the channels being connected to each other along their length by one or more connecting passageways dimensioned relative to the channels to provide a restriction so as the enhance coolant flow velocity, in use, through the connecting passageway.
Abstract:
A magnetron has an anode cylinder, a plurality of vanes arranged radially within the anode cylinder, a magnetic piece disposed at an open end section of the anode cylinder, an anode vacuum container including a metal container disposed to cover an upper surface of the magnetic piece, a cathode disposed along a central axis of the vacuum container, and an antenna externally discharging microwaves. The magnetic piece and the metal container are placed, in that order, on a shelf formed inwardly on a thin end section projecting from the open end section of the anode cylinder. When tightly welding the thin end section, a predetermined number of projections, projecting inwardly from the thin end section of the anode cylinder, loosely secure an outer perimeter bend of the metal container. The metal container is then accurately tightly weld to the anode cylinder without the metal container shifting off-center.
Abstract:
An anode structure of the present invention provides radially disposed first vanes and radially disposed second vanes interdigitating with the first vanes. The first vanes and the second vanes are each interconnected by a first strap and a second strap, respectively. The first strap and the second strap are disposed coaxially on the same side of the vane structure and are generally rectangular in cross-section, having substantially parallel facing surfaces. Each of the vanes is generally T-shaped, with a relatively wide first portion and a relatively narrow second portion. The first portion is disposed proximate to an axis of the cavity with the second portion extending radially outward therefrom. The first portion has a radially tapered region extending to an innermost edge of the vanes, disposed completely within a diameter defined by an innermost one of said vanes.
Abstract:
This invention relates to a radiation fin structure of a magnetron and a magnetron which includes such a structure. The fin structure is capable of effectively radiating heat at a high temperature produced during oscillation of the magnetron. The magnetron can be used to generate microwaves which can be emitted into a cavity of a microwave oven. The radiation fin is capable of reducing a separation region in the rear of an anode of the magnetron by guiding cold air which passes through a cooling section of the magnetron to the back side of the anode to generate turbulence within the cooling section. The radiation fin structure incorporated in this invention includes a plurality of pairs of confronting protrusions formed at opposite side portions of the radiation fin. The fins are arranged externally of the magnetron anode equally spaced-apart from one another to guide cold air to the back side of the anode.
Abstract:
In a magnetron anode, an anode surrounds a central cathode. The anode is of a segmented structure having a plurality of annular segments stacked together along its length. Each annular segment includes a strap, the strap being distributed substantially along the entire axial length of the anode vanes. This enables mode separation to be achieved, even for long anode lengths and, hence, permits high power operation to be achieved. In addition, the segmented structure of the anode gives a mechanically robust design.
Abstract:
A lighting apparatus which uses microwave energy which includes a microwave generator disposed inside a casing for generating microwave energy, a waveguide for transmitting the microwave energy, a resonator for covering an outlet of the waveguide, a bulb placed inside a resonator for generating light by the microwave energy transmitted through the waveguide, a conduction block in contact with the microwave generator for receiving heat generated in the microwave generating process, a heat transfer unit connected between the conduction block and the casing for transmitting heat from the conduction block to the casing and a radiating unit installed at the end of the heat transfer unit for radiating heat transmitted from the conduction block to the casing or outside of the casing.
Abstract:
In a magnetron apparatus and a manufacturing method of the present invention, the magnetron apparatus comprises an anode cylinder, and a plurality of plate-form anode segments radially arranged around a central axis of the anode cylinder inside the anode cylinder. The anode segments are pressed against an inner surface of the anode cylinder by a pin press-fit into the central portion of the anode cylinder, and a far-end-side end surface each of the anode segments is secured to the inner surface. A concave is provided in the central portion of an inner end surface where the anode segments come into contact with the pin.
Abstract:
In a magnetron for a microwave oven comprising a plurality of vanes as an anode and an antenna feeder mounted to the vanes, an antenna feeder fixing device comprising a plurality of radially spaced grooves formed at the upper surface of every other vane so that the antenna feeder is engaged with one of the grooves selected depending on the output of the magnetron. The antenna feeder fixing device can be applied to various models of magnetrons having different outputs, without changing the construction of vanes. This enables modular elements to be used for providing various models of magnetrons, irrespective of different outputs of magnetrons. Only one mold is needed for preparing a single vane construction having a plurality of grooves for various magnetron models, thereby enabling the manufacture cost to decrease.
Abstract:
In a magnetron anode, an anode (6) surrounds a central cathode (1). The anode (6) is of a segmented structure having a plurality of annular segments (9) stacked together along its length. Each annular segment (9) includes a strap (10), the strap being distributed substantially along the entire axial length of the anode vanes (8). This enables mode separation to be achieved, even for long anode lengths and hence permits high power operation to be achieved. In addition, the segmented structure of the anode gives a mechanically robust design.