Abstract:
Three-dimensional objects are displayed in real time within a solid volume of optically transparent material by utilizing two infrared laser beams of different wavelengths to create visible light inside the display material via a two-photon upconversion process. Objects comprising points, lines, surfaces, and volumes are drawn by decomposing them into a set of small three-dimensional cells or "voxels" located at specific coordinates inside the display medium. Individual voxels are addressed and activated by intersecting the two invisible infrared laser beams at the appropriate coordinate locations. The display material is tailored to provide efficient upconversion in the region of intersection, with minimal visible light generated outside this region by either one of the infrared beams alone. Typical media are rare-earth-doped glasses or crystals having low phonon energies. The general methods for selecting and producing the display material, along with a plurality of system configurations for addressing the display, are disclosed.
Abstract:
This invention relates generally to three dimensional volumetric display. Optical data is supplied by an optical data generator through an optical interfacing unit to a rotating display which produces three dimensional volumetric images. The optical interfacing unit transforms non-rotating incoming optical data into rotating optical data which is synchronous with the rotating display. If the optical data generator is viewed backwards along the optical path from the display, looking into the output of the interfacing unit, the position and orientation of the optical data generator will be seen as invariant with respect to the rotating display surface.
Abstract:
A digitized video system having a processor and a video memory. The processor converts a stream of digital information to extract planes of a three dimensional image to store into the video memory to display a three dimensional image. A spatial light modulator is connected to the video memory to receive and display a plane of said image to display a three dimensional image.
Abstract:
Three-dimensional objects are displayed in real time within a solid volume of optically transparent material by utilizing two infrared laser beams of different wavelengths to create visible light inside the display material via a two-photon upconversion process. Objects comprising points, lines, surfaces, and volumes are drawn by decomposing them into a set of small three-dimensional cells or "voxels" located at specific coordinates inside the display medium. Individual voxels are addressed and activated by intersecting the two invisible infrared laser beams at the appropriate coordinate locations. The display material is tailored to provide efficient upconversion in the region of intersection, with minimal visible light generated outside this region by either one of the infrared beams alone. Typical media are rare-earth-doped glasses or crystals having low phonon energies. The general methods for selecting and producing the display material, along with a plurality of system configurations for addressing the display, are disclosed.
Abstract:
A three-dimensional display device comprising an evacuated enclosure (45). A phosphor coated screen (44), means to rotate the phosphor coated screen, one or more electron gun (41-43) and control means to drive the one or more electron gun. Sequential image Frames (FIGS. 2b-2f) are written to the rotating phosphor coated screen (44) by the one or more electron gun (41-43) for a number of image sectors. Provided the screen rotates sufficiently rapidly and the phosphor coating has the required persistence the human eye will perceive a three-dimensional image within the display volume swept out by the phosphor coated screen. In the preferred embodiment the planar screen (44) rotates about a vertical axis with three electron guns (41-43) located below the display volume directed upwardly towards the center of the display volume. In another embodiment the display screen is in the form of a helix (51) with the electron gun (52) being aligned substantially along the axis of rotation of the helix.
Abstract:
Three-dimensional objects are displayed in real time within a solid volume of optically transparent material by utilizing two infrared laser beams of different wavelengths to create visible light inside the display material via a two-photon upconversion process. Objects comprising points, lines, surfaces, and volumes are drawn by decomposing them into a set of small three-dimensional cells or "voxels" located at specific coordinates inside the display medium. Individual voxels are addressed and activated by intersecting the two invisible infrared laser beams at the appropriate coordinate locations. The display material is tailored to provide efficient upconversion in the region of intersection, with minimal visible light generated outside this region by either one of the infrared beams alone. Typical media are rare-earth-doped glasses or crystals having low phonon energies. The general methods for selecting and producing the display material, along with a plurality of system configurations for addressing the display, are disclosed.
Abstract:
A digitized video system having a processor and a video memory. The processor converts a stream of digital information to extract the information in a format to be usable with a moving display surface. A spatial light modulator is connected to a video memory connected to the processor to display the information on a moving display surface.
Abstract:
Three-dimensional objects are displayed in real time within a solid volume of optically transparent material by utilizing two infrared laser beams of different wavelengths to create visible light inside the display material via a two-photon upconversion process. Objects comprising points, lines, surfaces, and volumes are drawn by decomposing them into a set of small three-dimensional cells or "voxels" located at specific coordinates inside the display medium. Individual voxels are addressed and activated by intersecting the two invisible infrared laser beams at the appropriate coordinate locations. The display material is tailored to provide efficient upconversion in the region of intersection, with minimal visible light generated outside this region by either one of the infrared beams alone. Typical media are rare-earth-doped glasses or crystals having low phonon energies. The general methods for selecting and producing the display material, along with a plurality of system configurations for addressing the display, are disclosed.
Abstract:
A real-time, multi-color image �36! is displayed in a flat screen �20! composed of a low-phonon, optically transparent, non-pixelated host material doped with active ions. The display uses intersecting infrared laser beams �22, 24! of different wavelengths to induce a two-frequency upconversion process in the active ions at a point �28! in the screen. When the ions relax, visible fluorescence is produced. Different points in the display are activated by directing the laser beams �22, 24! to intersect at different locations within the screen. In one embodiment, beams from two lasers �28, 30! are controlled by single axis mirrors �32, 34!. In other embodiments, laser arrays or slab lasers are used to activate points within the screen. Through the use of additional lasers and dopants, multi-color images may be displayed. The doped host material is tailored to provide efficient upconversion in the region of intersection, with minimal visible light generated outside this region by either one of the infrared beams alone. Typical media are rare-earth-doped glasses or crystals having low phonon energies. The general methods for selecting and producing the display material, along with a plurality of system configurations for addressing the display, are disclosed.
Abstract:
A segmented direct volume display device includes a volume containing a medium, two mutually orthogonal matrices of light guns capable of providing light beams, each matrix outputting light at different wavelengths, a unit for generating images in the volume by selectively activating the light guns, an image being formed at the intersection of two beams, one from each of the two matrices, and a unit for displaying images in different colors in different segments of the volume. The segmented direct volume display device may further include, on display planes of the volume, a filter for blocking out light output from the light guns while allowing viewing of the image. The segmented direct volume display device may also include individual filters, external to the volume, for each segment. The individual filters block out light from images in other segments while allowing viewing of a generated image within a corresponding segment. The selective activation of the light guns may be in response to data from many different sources.