Abstract:
Tire has a casing defining a hollow interior, a fill disposed in the interior of the casing, and the fill including at least one layer having an initial diameter substantially the same as the initial diameter of the casing. The fill layer includes an expansion joint. When the casing expands the expansion joint expands and causes the first layer to substantially continuously contact the casing. The expansion joint may be configured so that the layer(s) of the fill substantially continuously contact each other and the casing, respectively, as the casing expands. The expansion joint may be engineered to produce a gap extending between first and second free ends of the layer(s). Or the gaps may be selected so that the first and second ends of the respective layers continuously remain at least partially in contact with each other before, during, and after expansion is completed; i.e., when the casing is at maximum expansion.
Abstract:
The preferred embodiment is directed to a pneumatic tire having a plurality of layers of high density foam rubber formed therein and methods of manufacturing and installing the layers therein. The preferred method of forming the layers of fill to be inserted in the pneumatic tire casing includes the following steps. Forming an elongated strip of elastomeric material of a size sufficient to form at least two concentric layers in a predetermined size casing of a pneumatic tire at a manufacturing site. At least one dimension of the elongated strip is the same as at least one dimension of the two concentric layers when inserted in the casing. Formulating data sheet having information from which the elongated strips can be cut to form the at least two layers for at least one predetermined condition. Transporting the elongated strip of the elastomeric material and the data sheet to an installation site remote from the manufacturing site.
Abstract:
A rubber material which is a cured rubber having a hardness of from 30.degree. as measured with an A-type rubber hardness tester to 15.degree. as measured with an F-type rubber hardness tester and an impact resilience of not less than 50%. The material has excellent vibration-proof, sound-proof, shock-absorbing or cushioning properties and is useful as a material for vibration-proof, sound-proof, shock-absorbing and cushioning members.