Abstract:
A novel catalyst for use in dehydrogenation of saturated hydrocarbons to unsaturated hydrocarbons and a method for its preparation is disclosed. Said catalyst comprises a composite incorporated within its spatial geometry on a percentage by weight basis, with a uniform concentration gradient, the following active elements: from 0.1 to 5.0% of a noble metal; from 0.1 to 5.0% of a metal of Group IV A; from 0.1 to 6.0% of a metal Group III A; from 0.1 to 10.0% of an alkali or alkaline earth metal element; from 0.01 to 10.0% of a halogen; and from 0.1 to 5.0% of a metal Group VIII selected from Fe, Co and Ni provided on a high surface area meso or macroporous support. The the high surface mesoporous support comprises a spheroidal gamma alumina support with a diameter of 1.4 to 2.0 mm, a surface area in the range of from 150 to 220 m2/g, with bimodal narrow pore size distribution, water adsorption capacity in the range of from 1.4 to 2.5 ml/g, gamma crystallinity in the range of 60 to 80% and a bulk density in the range of 0.25 to 0.4 g/ml.
Abstract:
The invention concerns the use of a solid basic catalyst comprising a hydrotalcite structure wherein part at least of the compensating anions are fluoride anions F for producing Knoevenagel or Michael condensation reactions. The invention also concerns novel solid basic catalysts comprising a hydrotalcite structure characterised by a Mg/Al molar ratio ranging between 2.5 and 3.8 wherein at least part of the compensating anions are fluoride anions F, and methods for preparing said novel catalysts.
Abstract:
The present invention relates to a catalyst component for the (co)polymerization of olefins comprising titanium, magnesium, halogen and a mixed electron-donor and a catalyst for the (co)polymerization of olefins comprisin: (A) the catalyst component; (B) an organic aluminum compound; and (C) an organic silicon compound. The polymer with high and adjustable stereospecificity and broad molecular weight distribution can be prepared by using the catalyst.
Abstract:
A catalyst composition comprising an inorganic support material, a palladium component, a silver component, and a promotor component having the formula XYFn, wherein X is an alkaline metal, Y is an element selected from the group consisting of antimony, phosphorus, boron, aluminum, gallium, indium, thallium, and arsenic, and n is an integer which makes YFn a monovalent anion. The above-described catalyst is employed as a catalyst in the selective hydrogenation of acetylene. The above-described catalyst is made by incorporating a palladium component, a silver component, and a promotor component into an inorganic support material.
Abstract:
A process for the production of acetylopyridines of the formula (1): 1 by reacting a pyridinecarboxylic ester of the formula (II): 2 wherein R1 is C1-8-alkyl, with acetic acid in the gas phase in the presence of a catalyst. The active material of the catalyst is titanium dioxide and at least one alkali or alkaline earth metal oxide, and it is supported on an alumina-silica support having an apparent porosity of at least 50 percent. The process has the advantage of producing only small amounts of by-products (e.g, pyidine).
Abstract:
The present invention is to provide a composite carrier, which is spheric particles obtainable by contacting magnesium halide with one or more electron donor compounds to form a solution, then mixing the solution with silica material having an average particle size of less than 10 microns to form a mixture, and drying the mixture through spray drying process. The present invention is also to provide a catalyst component comprising said composite carrier. When the catalyst component is used together with a cocatalyst component in propylene polymerization, it exhibits higher polymerization activity and stereospecificity, and can be used to prepare high impact resistant ethylene-propylene copolymer having high ethylene content.
Abstract:
A process for producing a Ziegler-Natta catalyst, the process comprising reacting an organo magnesium compound with a halogenated compound to produce crystalline magnesium halide having an intense diffraction line in an x-ray spectrum thereof at lattice distance within the range of from 2.56 to 3.20 Angstroms and titanating the magnesium halide by mixing the magnesium halide with a titanium compound whereby the titanated magnesium halide hasp in an x-ray spectrum thereof, a halo appearing at a lattice distance within the range from 2.56 to 3.30 Angstroms.
Abstract:
Aluminum-magnesium silicate- or fluorinated magnesium silicate- aerogels which may be calcined, chemically modified, ion-exchanged, agglomerated, used as a component of a catalyst composition for an addition polymerization; supported versions thereof; and processes for polymerization are disclosed.