Abstract:
A method for manufacturing a dental or medical tool the method comprising the steps of positioning a pre-fluted blank 14 including a stem 24 and a shank 22 within a machine 30, using a probe to identify a position and/or an orientation of at least one flute 26 of the pre-fluted blank 14 and/or the position and/or orientation of an orientation indicator 28 of the pre-fluted blank 14, and using the machine 30 to form a cutting end region 36 at the end of the stem 24 of the pre-fluted blank 14 remote from the shank 22, the flute 26 extending into the cutting end region 36, the machine 30 being controlled to ensure that the cutting end region 36 is correctly orientated relative to the flutes 26 of the pre-fluted blank 14.
Abstract:
A method for producing one or more concave cut-outs on a main body, which is in particular substantially cylindrical, more particularly one or more grooves on a magnetic armature, a push rod, or a magnetic keeper plate, includes the following steps:
providing a main body, which is in particular substantially cylindrical and has a first axis of rotation, rotating the cylindrical main body around the first axis of rotation in a first rotational direction by means of a lathe, and rotating a striking tool, which is provided with a number of fly cutters, around a second axis of rotation, which extends in parallel and offset in relation to the first axis of rotation in a second rotational direction, which is opposite to the first rotational direction, in such a way that the fly cutter engages in a material-removing manner in the main body to produce the cut-out.
Abstract:
An object of the present invention is to provide a power steering apparatus and a method of manufacturing a power steering apparatus that allow balls to smoothly travel in a connection member for circulating the balls. To achieve this object, a first curved portion of a first connection passage of a nut that faces a first bent portion of the connection member is formed into a curved shape in such a manner that a space between the first curved portion and the first bent portion is equal to or smaller than a predetermined value. Further, a second curved portion of a second connection passage of the nut that faces a second bent portion of the connection member is formed into a curved shape in such a manner that a space between the second curved portion and the second bent portion is equal to or smaller than a predetermined value.
Abstract:
A bit for drilling with a casing or liner string includes: a tubular stem made from a high strength metal or alloy; a head: having a cutting face with an inner cone, an outer shoulder, and an intermediate nose between the cone and the shoulder; attached to an end of the stem; and made from a nonferrous metal or alloy; a plurality of blades formed integrally with the head, made from the nonferrous metal or alloy, and each extending from a center of the cutting face to the shoulder; a plurality of superhard cutters mounted along each blade; a plurality of gauge pads formed integrally with the stem; and a flush joint formed between each blade and a respective gauge pad. A yield strength of the high strength metal or alloy is at least twice a yield strength of the nonferrous metal or alloy.
Abstract:
Processing is performed from the front end of a bulb to a connection portion with a shaft along an inclined surface of the bulb, using a rotary tool that is inclined at an angle formed by a connection point of a radius of the shaft with a radius of the bulb and the front end of the bulb; then, processing of the shaft is performed, and a stylus is manufactured.
Abstract:
A method for obtaining an incision in an embossing roller using a hob to provide protuberances that are rounded on top and which improve the quality of the embossed material and reduce the wear of the mechanical components of the embossing units. The shape of the protuberances is obtained by machining the cylindrical surface of the roller placed between the tailstocks of the lathe using a hob that has teeth, the profile thereof being complementary to the cross-section of the protuberances. A portion of the hob with the teeth generates the grooves that define the side faces of the protuberances. The grooves between the teeth of the hob have a profile that is curvilinear in a cross-sectional view. With a double pass at two different inclinations of the surface of the roller, the protuberances of FIGS. 5 and 6 are generated.
Abstract:
A method for milling a threading of a screw or tapped hole. The threading has a cross section in the shape of a triangle with a truncated crest. The method includes milling a first flank (V1) of at least one spire of the thread by a first comb (A) of a milling tool (F). The teeth of the first comb (A) are spaced in relation to one another by a first pitch (P1). Then milling a second flank (V2) of at least one other spire of the thread by a second comb (B) of the milling tool (F), wherein the teeth of the second comb (B) are spaced in relation to one another by a second pitch (P2) equal to the first pitch (P1) and offset from the teeth of the first comb (A) by a phase displacement (DP). Then milling a truncated portion (V3) of the crest by a third comb (C) of the milling tool (F).
Abstract:
A twist drill includes a drill body having a chip flute extending a distance along the drill body. The chip flute has a leading edge and a run-out edge running along the chip flute. The run-out edge is disposed behind the leading edge in a direction of rotation of the twist drill. The chip flute, viewed cross-sectionally in a direction perpendicular to the longitudinal axis, includes a first wall portion and a second wall portion. The first wall portion extends along a curve between the run-out edge and the second wall portion. The second wall portion extends in a straight line from between the leading edge and the first wall portion. The first wall portion and the second wall portion are disposed adjoining one another and together define a J-shaped cross-sectional profile perpendicular to the longitudinal axis.
Abstract:
The frame of the whirling head comprises the rigid casing (7), in which the part (10) contains the drive pulley (15) solidly attached to the coupling member (17) connected to the drive shaft of the spindle (26). By means of the belt (19), this pulley (15) drives the pulley (8) solidly attached to the connecting cone (4), which in turn comprises the internal milling cutter (1) which cuts the thread of the screw shaft (27) supported between the bar advance unit (28) and the tailstock centre (29). The latter is mounted as an exchangeable tool on the return unit (32).
Abstract:
A method and apparatus for making a globoid screw for use as a mainrotor in a compressor or expander wherein a cylindrical rotor body is mounted for rotation about the longitudinal axis thereof, a cutter having a plurality of teeth at spaced locations around a circumference disposed in a plane and having an axis of rotation disposed perpendicular to that plane is mounted for rotation about its axis and is disposed so that the plane thereof is parallel to the rotor body longitudinal axis and so that the cutter rotational axis is perpendicular to the rotor longitudinal axis, and the rotor body and the cutter are rotated at synchronized speeds. The rotor body and cutter are positioned relative to each other in a manner moving the cutter axis of rotation and the rotor body longitudinal axis relative to each other to decrease the distance between the axes during rotation of the cutter and rotor body so that the cutter teeth contact the rotor body curing each cutter rotation to remove material from the rotor body by a milling action to form a globoid screw profile including a groove having a pair of spaced-apart sidewalls and extending along the rotor body in a helical path. The relative speed between the rotor body and the cutter is changed by a given amount for a given time to effect a positional change between the cutter teeth and the material of the rotor body thereby resulting in a desired change in the globoid screw profile.