摘要:
The disclosure relates to monitoring systems and methods. A first aspect relates to a monitoring system for use when loading fluid from a source tank to a destination tank via a loader apparatus, the monitoring system having: a first input for coupling to the source tank in order to receive a source tank input signal; a second input for coupling to the destination tank in order to receive a destination tank input signal; a sensor input for receiving a sensor signal from a fill level sensor in the destination tank; circuitry configured to determine: a first status of an electrical continuity between the loader apparatus and the source tank in accordance with the source tank input signal, a second status of an electrical continuity between the loader apparatus and the destination tank in accordance with the destination tank input signal, and a fill level status in accordance with the sensor signal; and a single user interface for displaying the first status, second status and fill level status.
摘要:
A method, apparatus and system is provided for both (1) decreasing electrostatic discharges to reduce the potential for incendiary discharges caused by electrostatic charges in flexible containers such as flexible intermediate bulk containers (FIBCs) and (2) decreasing the induction on isolated conductors nearby the container to reduce the potential for incendiary discharges from the isolated conductors.
摘要:
Provided is a storage tank or structure with conductive fiber material (e.g. carbon fiber) for dissipating electrostatic charge. The tank comprises a tank wall made of composite material, such as polyester-fiberglass composite. On an inner tank surface, open areas are provided in which the conductive fiber is exposed. The conductive fiber material has broken fiber tips and stray fibers for collecting electrostatic charge. Outside the open areas, the conductive fiber material is covered with a layer of cured resin. The conductive fiber is exposed only in the open areas. An impermeable film may be present under the conductive fiber in the open areas. The present invention also includes a method for making the tank, in which a liquid, gel, or impermeable film mask is applied to the conductive fiber material. The mask functions to prevent infiltration of liquid resin into the conductive fiber material.
摘要:
A conductive tank sump (100) and a dispenser sump (200) ensuring dissipation of electrostatic charges is disclosed. The sumps (100, 200) which are fully conductive through underground comprising (a) a sump wall made from fiberglass composition impregnated with conductive resin; (b) a ground block (16, 26) secured at the inner surface of the sumps (100, 200); (c) a plurality of pipes mounted through holes provided on the wall of the sumps (100, 200); (d) a plurality of grounding cables (116, 226) connecting the pipes and/or isolated conductors which needs to be earthed to the ground block (16, 26) on the wall of the tank sump/dispenser sump (100, 200). The present invention also relates to method of grounding of the tank sump/dispenser sump (100, 200).
摘要:
A transport and storage container for liquids, having an inner container, an outer casing and an underframe with a bottom for supporting the inner container, and electrically non-conductive support legs. At least one support leg has a shaped sheet metal part to dissipate an electrostatic charge from the inner container. The end of the shaped part closest to the inner container has a container contact section for conductive connection with the bottom or the outer casing, and a standing contact section for conductive connection with the standing surface. The contact conductor section of the shaped part extends inside a cavity in the support leg and the standing contact section has a ground contact surface and a stack contact surface. These contact surfaces are connected by an offset element in the standing contact section and the stack contact surface is arranged above the ground contact surface in a vertical direction.
摘要:
The invention concerns a tank or silo vessel (10), in particular a vehicle-mounted vessel designed to hold liquid or other free-flowing goods, the elongated main body (12a) of the vessel having an essentially circular or elliptical or other cross section. The main body is closed off at each end by walls (12) which are conical, hemispherical or planar in shape, the main body (12a) and endwalls (12) enclosing a space (11) in the interior of the vessel. The vessel also has mountings (13) and pipe-connection facilities (14). In order to be able to produce the main body (12a), the end walls (12) and optionally also the mountings (13) and pipe-connection facilities (14) from fibre-reinforced plastic, the strength of the tank, in particular its resistance to temperature-related stresses, being higher than that of prior art tanks for the same or a lower weight, the invention proposes that the reinforcement fibres are embedded in the plastic in the form of filaments (16) or yarns continuously wound in a spiral round at least the main body (12a) of the tank.
摘要:
A wand for use in a vacuum system that is made from rigid or non-rigid polymeric materials that have static dissipative qualities so that any static discharge event will be at low enough energy levels so as not to pose a hazard to humans and will be well below the minimum ignition energy for many industrial powders and dusts.
摘要:
Provided is a method for making a composite structure with exposed conductive fibers. The exposed conductive fibers can be used for static dissipation. In the present method, a liquid, gum, gel, or impermeable film mask is applied to the conductive fiber material. The mask functions to prevent infiltration of curable liquid resin into the conductive fiber material. The masked conductive fiber material is incorporated into the composite structure, along with structural fiber material. The liquid resin is cured. The mask material and cured resin are removed from the masked areas, thereby exposing the conductive fiber material. The exposed conductive fiber material can collect and drain electrostatic charges. The present method can be used to make storage tanks and other objects that require electrostatic charge dissipation.