Abstract:
The method for forming from a round shaped cylinder to a square shaped cylinder which can be inserted in a square or rectangular shape metal container (shipping container and frac tanks) includes initiating turning of a heated mandrel, extruding heated polymer, wrapping while compressing a first layer of heated polymer, disposing a mesh layer over the cylinder encapsulating the cylinder on the turning mandrel while simultaneously laying a second layer of heated polymer over the turning mandrel and compressing the layer of heated polymer into the mesh layer and the mesh layer into the first layer of heated polymer simultaneously, and repeating the layering of the heated polymer and mesh layer until a desired wall is reached. The method forms a hybrid polymer square or oval tank or a hybrid polymer round, which achieves over 95 percent of the total volume of the metal container.
Abstract:
There is provided a manufacturing method of a tank including a liner. The manufacturing method comprises (A) a process of winding fibers in a sheet-like form impregnated with a resin on a mandrel having a higher rigidity than rigidity of the liner and heating and curing the wound fibers in the sheet-like form to form a sheet layer; (B) a process of pulling out the mandrel from the sheet layer; and (C) fitting the liner into the sheet layer, after the process (B).
Abstract:
A method for manufacturing a tank for storing flammable liquids underground includes fabricating a cylindrical tank core. Structurally, the core encloses a chamber and has an outer surface. Further, the core includes at least one opening for monitoring the integrity of the chamber positioned on the core's bottom centerline. Also, the tank includes a screen attached to the outer surface of the core along the bottom centerline to cover the opening. Moreover, a foil is affixed to the screen and to the outer surface of the tank core. Sprayed or applied on the foil is a seamless jacket formed from polyurea to encapsulate the tank core.
Abstract:
A method is disclosed for reinforcement of thin wall hollow thermoplastic storage vessels with one or more wraps of continuous fibers. This method requires thermal bonding between the reinforcement fibers and the outer surface of the thermoplastic storage vessel while the interior cavity of the storage vessel is being pressurized. The fiber wraps can also be oriented in spatial directions further resisting internal stress on the storage vessel walls when put in service.
Abstract:
A composite tank stiffener reinforces a filament wound tank of generally cylindrical and hemispherical headed shape, possessing first and second inlet pipe members internally extended within and with fluid communication with the tank and movable, connected by a slideable expansion sleeve selected to resist lateral moment forces sufficient to distort the shape of said tank and also selected to compressively limit dimensional relative movement between the members to resist fabrication and operational loadings.
Abstract:
A double wall tank for the storage of liquids is disclosed, comprising a rigid inner tank having an aperture formed through a sidewall of the inner tank, and an outer sheath of synthetic resin material having an opening generally overlying the inner tank aperture and a generally annular flange member attached to the inner tank and extending over a portion of the outer sheath adjacent to and surrounding the outer sheath opening to urge that outer sheath portion toward the inner tank sidewall to form a substantially liquid impervious seal between the outer sheath and the inner tank surrounding and proximal to the inner tank aperture. A generally cylindrical passage member is attached to the inner tank adjacent the aperture and extending through the annular flange member to provide a substantially liquid-tight passage into the inner tank through the aperture and the opening in the outer end of the cylindrical passage member.
Abstract:
A multiple wall tank for the storage of liquids is manufactured from a rigid inner tank having at least one aperture by applying a layer of a synthetic resin material to the inner tank exterior surface around the aperture, providing a spacing means to provide for substantially free passage of liquids along at least a portion of the inner tank, applying over the layer of synthetic resin and the inner tank an outer sheath of a thermoplastic synthetic resin material, and bonding the outer sheath to the resin material layer surrounding and proximal to the aperture to form a substantially liquid-impervious seal around the aperture.
Abstract:
A double wall tank for the storage of liquids is manufactured from a rigid single wall inner tank by applying to at least a portion of the exterior surface of the inner tank a release agent for preventing bonding of a curable synthetic resin to the inner tank exterior surface, applying over the inner tank exterior surface and the release agent a substantially rigid outer sheath of a curable synthetic resin that, when cured, is substantially fluid tight, and breaking engagement between the inner tank exterior surface and outer sheath.
Abstract:
Improved multi-wall containers and pipes for transporting fluids which have to be protected against leakawge and mechanical forces, have an inner and outer wall separated by a continuous foam layer integrated into the containers. Improved strength and resistance to axial inertial pressure is provided by the method of manufacture using chopped fiberglass, continuous windings and suitable polyester resins and circumferential ribs spaced at stress points and integrally incorporated into the containment walls. Vessels produced according to the methods of the invention have a moment of inertia strength of about 4.67 in.sup.4 substantially eliminating torquing, buckling and rupture.
Abstract:
A tank for use in storing volatile liquids and, in particular, petroleum distillates, such as gasoline in an underground environment, includes a fiberglass outer wall lined with a corrosion-resistant impervious film liner that substantially covers the entire interior surface of the fiberglass tank. In a preferred method of constructing the tank, a lay-up mandrel has an end cap of the film placed over a first end thereof and pressed to fit closely the exterior surface topography of the mandrel. A strip of film is laid down on the mandrel overlying at least a portion of the end cap and the film strip is wound in a helical fashion such that at least portions of adjacent coils of the helix overlap one another until the mandrel is essentially completely covered by the film. The polyester resin and glass fibers are then laid down over the film and cured in place. The mandrel is then removed, leaving a film-lined fiberglass tank. In a preferred embodiment, the film is comprised of polyvinylfluoride or polyester terephthalate.