摘要:
The invention provides a monomode preform (2) comprising a mother preform (22) housed in an outer sleeve tube (20). It is characterized in that it also includes an intermediate tube (21) between the mother preform (22) and said outer tube (20), the intermediate tube (21) possessing viscosity at fiber-drawing temperature which is less than the viscosity(ies) at fiber-drawing temperature of said mother preform (22) and of said outer tube (20). The invention also provides a method of manufacturing a monomode optical fiber. The fiber has a core that is better centered and less deformed than in the prior art. An application of the invention lies in making an optical amplifier.
摘要:
Systems and methods for large scale synthesis of germanium selenide glass and germanium selenide glass compounds are provided. Up to about 750 grams of a germanium selenide glass or a glass compound can be synthesized at a time in about eight hours or less. Stoichiometrically proportional amounts of germanium and selenium are placed in an ampoule. A variable may also be placed in the ampoule. The ampoule is heated to above the softening temperature of the glass or glass compound being synthesized. The ampoule is then rocked for a period of time while the temperature is held constant. The temperature of the ampoule is then brought down to above the softening temperature of the glass or glass compound being synthesized and then quenched.
摘要:
A family of tellurite glasses and optical components for telecommunication systems, the glasses consisting essentially of, as calculated in cation percent, 65-97% TeO2, and at least one additional oxide of an element having a valence greater than two and selected from the group consisting of Ta, Nb, W, Ti, La, Zr, Hf, Y, Gd, Lu, Sc, Al and Ga, that may contain a lanthanide oxide as a dopant, in particular erbium oxide, and that, when so doped, is characterized by a fluorescent emission spectrum having a relatively broad FWHM value.
摘要:
An optical substrate is provided with a surface of a desired shape by coating the surface with a thin layer of an optical glass and subsequently modifying the shape of the external surface of the layer. In preferred embodiments, the temperature of the substrate is maintained at substantially less than 400null C., the substrate is an optical component other than a simple window, and the refractive index o the optical glass is within 20% of the refractive index of the material providing the surface to be coated. One particular use is when both the substrate (e.g. a non-linear optical layer) and the optical glass are optically transmissive in the near infra-red and/or mid infra-red ranges. The glass layer can compensate for physical imperfections in the surface. It can be polished to optical quality, or provide with detail across the coated surface, e.g. as a nullmoth-eyenull anti-reflection layer, or a diffractive or interference structure.
摘要:
No-bridging fluorine sites in calcium fluoride (CaF2) caused by lanthanide, transition metal or actinide impurities are eliminated by doping the CaF2 with sodium or another monovalent anionic dopant during or after growth of the crystal. This doping technique may be applied in the growth of other UV-transmissive fluoride materials in a family designated by a general formula Z:XFN where X is one or some combination of magnesium, calcium, zinc, strontium, cadmium, and barium, Z is one or some combination of lithium, sodium, potassium, rubidium, cesium, thallium, copper, silver and gold, and N is an integer in the range 1 through 6, and dependant on X. Elimination of the non-bridging fluorine sites can provide solarization resistant materials with low UV absorption even when the material contains sufficient lanthanide transition metal, or actinide impurities to cause the fluoride materials to be highly absorbing for UV radiation in the absence of the monovalent anion doping.
摘要:
The present invention provides new compounds for use in proton exchange membranes which are able to operate in a wide variety of temperature ranges, including in the intermediate temperature range of about 100null C. to 700null C., and new and improved methods of making these compounds. The present invention also provides new and improved methods for making chalcogenide compounds, including, but not limited to, non-protonated sulfide, selenide and telluride compounds. In one embodiment, the proton conductivity of the compounds is between about 10null8 S/cm and 10null1 S/cm within a temperature range of between about null50 and 500null C.
摘要翻译:本发明提供了用于质子交换膜的新化合物,其能够在多种温度范围内操作,包括在约100℃至700℃的中间温度范围内,以及新的和改进的制备方法 这些化合物。 本发明还提供了用于制备硫族化合物的新的和改进的方法,包括但不限于非质子化的硫化物,硒化物和碲化合物。 在一个实施方案中,在约-50至500℃的温度范围内,化合物的质子传导率为约10 -8 S / cm至10 -3 S / cm。
摘要:
In one aspect, a method is provided for molding from glass complex optical components such as lenses, microlens, arrays of microlenses, and gratings or surface-relief diffusers having fine or hyperfine microstructures suitable for optical or electro-optical applications. In another aspect, mold masters or patterns, which define the profile of the optical components, made on metal alloys, particularly titanium or nickel alloys, or refractory compositions, with or without a non-reactive coating are provided. Given that molding optical components from oxide glasses has numerous drawbacks, it has been discovered in accordance with the invention that non-oxide glasses substantially eliminates these drawbacks. The non-oxide glasses, such as chalcogenide, chalcohalide, and halide glasses, may be used in the mold either in bulk, planar, or power forms. In the mold, the glass is heated to about 10-110null C., preferably about 50null C., above its transition temperature (Tg), at which temperature the glass has a viscosity that permits it to flow and conform exactly to the pattern of the mold.
摘要:
The invention relates to a glass and a glass-ceramic comprising beta-quartz and/or keatite solid solutions, and to a process for their production, and to their use as substrate material for coating. Glass-ceramic comprising beta-quartz and/or keatite solid solutions with a surface roughness without polishing of Ra 85% for a 4 mm thickness, and a composition in % by weight, based on the total composition, containing: 1 Li2O3.0-5.5 Na2O0-2.5 K2O0-2.0 null Na2O null K2O0.5-3.0 null MgO null ZnO
摘要:
There is provided alkaloid halogen-doped sulfide glasses for an optical amplifier and a fabricating method thereof. An alkaloid halogen-doped sulfide glass is formed of silica doped with a Ge-Ga-S three-component system, Pr3null, and an alkaloid halogen. To fabricate the alkaloid halogen-doped sulfide glass for an optical amplifier, silica doped with Ge, Ga, S, Pr3null, and an alkaloid halogen as a starting material is filled into a container. The container is sealed in a vacuum and the starting material in the container is fused by heating the container. The container is cooled and the starting material is sintered by heating the container at a glass transition temperature.