摘要:
The invention relates to a process for drying a gaseous or liquid mixture by passing the said mixture into an adsorber, characterized in that the water adsorption equilibrium zone of the adsorber comprises an upstream alumina zone and a downstream molecular sieve zone.
摘要:
A process for separating multibranched paraffins comprised in a hydrocarbon feed comprising hydrocarbons containing 5 to 8 carbon atoms per molecule comprises a separation unit functioning by adsorption and contains at least one zeolitic adsorbent with a mixed structure with principal channels with openings defined by a ring containing 10 oxygen atoms and secondary channels with openings defined by a ring of at least 12 oxygen atoms, the secondary channels only being accessible to the feed to be separated via the principal channels. Particular zeolitic adsorbents of the invention are zeolites with structure types EUO, NES and MWW. NU-85 and NU-86 zeolites are also particularly suitable for carrying out the process of the invention.
摘要:
An adsorption process for the recovery of paraxylene from mixed xylenes using a molecular sieve adsorbent comprising SSZ-25, MCM-22, PSH-3, ERB-1, or ITQ-1. A preferred desorbent for the process is benzene. A hybrid adsorption/crystallization PX purification process is also described using the molecular sieve adsorbent.
摘要:
A process for separating at least one C8 alkylaromatic hydrocarbon from a mixture containing at least one C8 alkylaromatic hydrocarbon and at least one C9 or C10 alkylaromatic hydrocarbon using zeolite Y or zeolite Y ion exchanged with a metal selected from the group consisting of calcium, sodium, strontium, a Group IB element, a Group VIII element and mixtures thereof.
摘要:
The performance of an adsorptive separation process recovering para-xylene from a C8 aromatic hydrocarbon feed mixture is improved by operating the process at higher desorbent purity. The improved performance allows for tradeoffs in other operating parameters and rates or improved product rates. The process preferably employs a barium and potassium exchanged zeolitic molecular sieve as the adsorbent and toluene as the desorbent.
摘要:
Two separate paraffinic hydrocarbon products, such as normal and monomethyl branched C10-C23 paraffins, are recovered from a mixture comprising the product hydrocarbons and many other hydrocarbons in a process employing two adsorptive separation zones in series. A single desorbent comprising a light paraffin is used in both zones and recovered in a single system, thus reducing capital and operating costs. The recovered paraffinic hydrocarbons may then be dehydrogenated and reacted with benzene to form alkylaromatic hydrocarbons useful as a detergent precursor.
摘要:
Monomethyl branched C10-C15 paraffins or olefins are recovered from a mixture comprising other nonnormal hydrocarbons such as di-isoparaffins, di-isoolefins, naphthenes and aromatics by adsorptive separation in a process which includes a prepulse step. In the prepulse step nonnormal hydrocarbons which are readily separated from the product is passed into the adsorbent bed immediately before or with the feed stream. This increases the selectivity of the system and allows for easier separation of the desired hydrocarbons. The recovered monomethyl hydrocarbons may then be used to form a monomethyl branched alkylaromatic hydrocarbon useful as a detergent precursor.
摘要:
A method for concentrating 2,6-dimethylnaphthalene in a dimethylnaphthalene isomer mixture includes supplying the dimethylnaphthalene isomer mixture to an adsorption column packed with Y-type zeolite. In this instance, by setting the value derived from the expression (u1/3/&egr;)d−5/3 at 14 (m5/3 s−1/3 kg−1) or more, the concentration ratio of 2,6-dimethylnaphthalene to 2,7-dimethylnaphthalene can be 2.0 or more. u here represents the linear velocity (m/s) of the dimethylnaphthalene isomer mixture supplied to an adsorption column, &egr; represents the packing density (kg/m3) of Y-type zeolite, and d represents the grain size (m) of the Y-type zeolite.
摘要翻译:将2,6-二甲基萘浓缩在二甲基萘异构体混合物中的方法包括将二甲基萘异构体混合物供应到填充有Y型沸石的吸附塔上。 在这种情况下,通过在14(m <5/3> s <-1 / 3> kg -1)处设定从表达式(u <1/3 /ε)d <-5/3>导出的值 )以上时,2,6-二甲基萘与2,7-二甲基萘的浓度比可以为2.0以上。 这里表示供给吸附塔的二甲基萘异构体混合物的线速度(m / s),ε表示Y型沸石的填充密度(kg / m 3),d表示粒径(μm) 的Y型沸石。
摘要:
A pressure swing adsorption process to separate para-xylene and ethylbenzene from C8 aromatics uses a para-selective adsorbent, preferably a non-acidic, medium pore molecular sieve of the MFI structure type, and is operated isothermally in the vapor phase at elevated temperatures and pressures. A fixed bed of adsorbent is saturated with para-xylene and ethylbenzene, which are preferentially adsorbed, then the feed to the process is stopped. Lowering the partial pressure desorbs the para-xylene and ethylbenzene. The process effluent is rich in para-xylene and ethylbenzene. A stream of non-adsorbed meta-xylene and ortho-xylene may be obtained prior to desorption of para-xylene and ethylbenzene.
摘要:
An improved process for recovering hydrocarbons from an inlet inert gas-hydrocarbon vapor mixture is provided. The inlet mixture is caused to flow through a first bed of solid adsorbent whereby hydrocarbon vapors are adsorbed on the bed and a residue gas stream comprised of substantially hydrocarbon-free inert gas is produced. The hydrocarbon-free inert gas is vented and a second bed of solid adsorbent having hydrocarbon vapors adsorbed thereon is evacuated with an ejector operated by a motive liquid. A major portion of the hydrocarbon vapors is desorbed from the bed and an inert gas and hydrocarbon-rich vapor mixture commingled with the motive liquid is produced. The inert gas and hydrocarbon-rich vapor mixture is separated from the motive liquid and conducted to a point of additional processing or disposal. The flow pattern of the inlet inert gas-hydrocarbon vapor mixture is periodically changed whereby when the bed through which the inlet inert gas-hydrocarbon vapor mixture is flowing becomes loaded, the inlet inert gas-hydrocarbon vapor mixture is caused to flow through the bed which has just been evacuated and the bed loaded with adsorbed hydrocarbon vapors is caused to be regenerated.