Abstract:
Trace amount levels of heavy metals such as mercury in crude oil are reduced by contacting the crude oil with an oxidizing agent and then with a reducing agent. In one embodiment, the oxidizing agent is selected from the group of hydroperoxides, organic peroxides, inorganic peracids and salts thereof, organic peracids and salts thereof, halogens such as iodine (I2), bromine (Br2), and ozone. The treatment converts non-volatile mercury in the crude oil into a volatile form for subsequent mercury removal by any of stripping, scrubbing, adsorption, and combinations thereof. In one embodiment, at least 50% of the mercury is removed. In another embodiment, the removal rate is at least 99%.
Abstract:
This invention relates to a composition suitable for use in process for the removal of sulfides, especially hydrogen sulfide from a feed contaminated therewith. The composition comprises an aqueous solution of a chlorite and a corrosion inhibitor which is an amphoteric ammonium compound of the formula ##STR1## as herein defined. The inhibitor mitigates problems of corrosion associated with chlorite scavengers.
Abstract:
A method for reducing mercaptan concentration in a crude oil is disclosed. The method comprises contacting the crude with a treating solution comprising a hypochlorite solution, whereby the mercaptan sulfur is oxidized and converted to at least one sulfur oxoacid or salt thereof, yielding a treated crude oil having less than 50 ppm mercaptan sulfur and residual organic chloride. The treated crude oil containing residual organic chloride is brought in contact with a caustic solution at a molar ratio of caustic to chloride of 0.1:1 to 50:1, generating an upgraded crude oil with less than 10 ppm organic chloride. In one embodiment, the spent treating solution is recycled to form a regenerated hypochlorite stream for use in the treatment solution.
Abstract:
High sulfur crude oil is desulfurized by a low temperature (25.degree.-80.degree. C.) chlorinolysis at ambient pressure in the absence of organic solvent or diluent but in the presence of water (water/oil=0.3) followed by a water and caustic wash to remove sulfur and chlorine containing reaction products. The process can be practiced at the well site for the recovery of desulfurized oil used to generate steam for injection into the well for enhanced oil recovery.
Abstract:
A catalytic composite comprising a metal chelate mercaptan oxidation catalyst and an alkanolamine hydroxide impregnated on a solid adsorptive support is disclosed.
Abstract:
Nitrogen trichloride produced in situ from the reaction of a chlorine source and a nitrogen source in a non-aqueous fluid is adsorbed on an adsorption media and serves to oxidize, bleach or deactivate contaminants and foreign matter of the fluid similarly adsorbed on said adsorption media.
Abstract:
This disclosure relates to a method of managing a sulphur-containing species from a sour liquid, the method comprising: providing a sour liquid comprising sulphur-containing species; introducing a halogen-based catalyst to the sour liquid, the halogen-based catalyst being complexed with a second species; introducing an oxidant to the sour liquid; and reacting the sulphur-containing species, the halogen-based catalyst and the oxidant. The second species may be an ethoxylate or propoxylate species. The disclosure also relates to a composition comprising a sour liquid, a hydrogen-based catalyst complexed with a second species, and an oxidant, a use of a halogen-based catalyst that is complexed with a second species for the treatment of a sulphur-containing species in a sour liquid, and a composition containing a halogen-based catalyst that is complexed with a second species in a suitable carrier for use in the treatment of a sulphur-containing species in a sour liquid.
Abstract:
A method for reducing mercaptan concentration in a crude oil is disclosed. The method comprises contacting the crude with a treating solution comprising a hypochlorite solution, whereby the mercaptan sulfur is oxidized and converted to at least one sulfur oxoacid or salt thereof, yielding a treated crude oil having less than 50 ppm mercaptan sulfur and residual organic chloride. The treated crude oil containing residual organic chloride is brought in contact with a caustic solution at a molar ratio of caustic to chloride of 0.1:1 to 50:1, generating an upgraded crude oil with less than 10 ppm organic chloride. In one embodiment, the spent treating solution is recycled to form a regenerated hypochlorite stream for use in the treatment solution.