Abstract:
A system and method are disclosed for acoustic scintillation liquid flow measurement. Measurement is carried out by acoustic beams transmitted perpendicular to the direction the component of liquid flow to be measured, with both phase and amplitude measurements being made to enable generation of accurate speed of flow indications which are indicative of liquid flow through a broad area being monitored as opposed to a single point therein. In one realization of this invention, a pair of projectors are mounted on one side of the flow area, such as a channel to be monitored, and a pair of receivers are mounted on the other side of the flow area with pulsed acoustic signals from each of the projectors being transmitted in separate parallel paths through the liquid, such as water, to the receivers. At the receivers, electrical signals indicative of received acoustic signals in each path are complex demodulated after which the demodulated outputs are shaped, converted and then coupled to a microcomputer for evaluation and, responsive thereto, providing the indication of liquid flow speed.
Abstract:
Apparatus for accurately metering liquid flow based on the injection of a brief heat pulse into the flowing stream, e.g., via a miniature thermistor, and detection of an electronic time derivative of temperature downstream with, e.g., a second microprobe thermistor. This detection triggers a subsequent heat pulse and the cycle repeats, with pulse total corresponding to elapsed liquid throughput, and pulse frequency to flow rate.
Abstract:
A flowmeter for the measurement of fluid flow employs a combination of two transit times for the passage of charged particles through a known distance under different conditions. Applications include the measurement of the air-fuel mixture in automobile engines.
Abstract:
A flow sensor particularly adapted to the measurement of fuel flow to internal combustion engines, but not limited thereto, the sensor including an annular raceway intersected by a tangentially disposed inlet jet nozzle and an outlet opening disposed immediately downstream of the inlet jet nozzle and radially offset therefrom whereby the initial fluid jet passes the outlet opening before radial distribution in the raceway, then circles the raceway and discharges into the outlet; the raceway receiving a ball having a density corresponding to the fluid for continuous rotation at a speed corresponding to the speed of the fluid movement in the raceway; the raceway having a traverse optical sensor to detect rotation of the ball; a chamber having a diaphragm exposed to flow through the inlet, the chamber assuming an expanded condition during increased flow and contractable on initial minimum flow to effect momentary supplemental flow to the raceway, and aid in maintaining movement of the counter ball.
Abstract:
Noise signals from a relatively moving object, such as those caused by eddies in a fluid or by protrusions and recesses or gradation on the surface of paper or an iron plate, are sensed at two or more points spaced in the direction of the motion. A difference signal is then obtained from the resulting two noise signals. The relative velocity of the object is detected from the difference signal by utilizing the autocorrelation function or the frequency spectrum of the difference signal.
Abstract:
The present invention relates to a sensing device having a chamber containing positive and negative ions, wherein a fluid flow is directed into the chamber and ionized. The ionized flow passes between a plurality of conductive plates, the outputs from which can be used to indicate physical effects, such as air or gas flow and angular motion.
Abstract:
Provided is a method for determining gas flow rates in an exhaust gas stream from a combustion process by measuring the amounts of a tracer gas inherently present in a gas used in the combustion process at a point upstream from the exhaust gas and at a point in the exhaust gas stream itself. The flow rate is determined by comparing the concentration of the tracer gas at the two points using a mass balance. Flow/emission of a particular species in the exhaust gas is determined by using the present method upon measuring the concentration of the species in the exhaust gas. The most preferred tracer gases include helium and argon.
Abstract:
Disclosed is an emitting or detecting element for an in-line flow measuring instrument operating on the thermopulse-injection and transit time measuring principle. The element is composed of a severally meandering resistance path spread only across a partial cross-section which is small compared to the flow cross-section and which is anchored at its mutually insulated reversing points by means of holding tapes and electrode leads into the flow-wall of the measuring instrument. The emitting or detecting element can be produced in the most diverse ways. For instance, it can be etched out of thin metal foils by lithographic methods, it can be stamped out of sheets, and also it can be made by welding resistance wires together.
Abstract:
Noise signals from a relatively moving object, such as those caused by eddies in a fluid or by protrusions and recesses or gradation on the surface of paper or an iron plate, are sensed at two or more points spaced in the direction of the motion. A difference signal is then obtained from the resulting two noise signals. The relative velocity of the object is detected from the difference signal by utilizing the autocorrelation function or the frequency spectrum of the difference signal.
Abstract:
A fluid velocity measurement system includes a thermal generation means operated for short durations of time and disposed within a conduit suitable for guiding at least a portion of a fluid whose velocity is to be determined. Disposed downstream in the fluid guide means is at least one of a first and second thermal sensing means. The sensing means are spaced from each other. The first and second thermal sensing means are differentially coupled. The time period starting with the thermal generation means being turned on and heating a slug of fluid and extending to the generation of a differential electrical signal from the sensing means detecting the heated slug of fluid is the flight time of the heated slug of fluid. In one embodiment of the invention circuitry is provided to measure the actual flight time and divide it into a predetermined period of time resulting in a quotient which is proportional to the fluid velocity. In another embodiment the flight time is measured by a count which is divided into a predetermined count which is equivalent to a quotient also proportional to the fluid velocity. Both embodiments further include means for receiving the quotient and converting it into an appropriate signal to operate a numerical display.