Abstract:
The invention relates to a process and a device for detecting or recognizing an object by means of color recognition or brightness evaluation, whereby radiation emitted by a radiation source on the object and radiation reflected from the object is recorded by a photosensitive element such as a color-recognizing sensor. In order to be able to detect objects with a higher measuring exactitude, whereby changes in distance between object and light-sensitive element should not basically lead to a measurement falsification, it is suggested that reflected radiation be guided to the photosensitive element by means of a light-guiding element tapering in the direction of the photosensitive element.
Abstract:
A color detecting sensor includes a light emitting element for emitting red light, a light emitting element for emitting green light, a light emitting element for emitting blue light, a light receiving element for receiving light emitted from each of the light emitting elements through an ink ribbon, and detecting device for detecting a color of the ink ribbon forming at least a colorless and transparent portion and the colorless and transparent portion based on an output signal of the light receiving element, the detecting device including a storage section for storing, as color reference data, the output signal of the light receiving element when the light emitting elements emit light through the colorless and transparent portion of the ink ribbon respectively, and a color deciding section for comparing, with the color reference data, the output signal of the light receiving element when the light emitting elements emit light through the color formed on the ink ribbon respectively, thereby deciding the color of the ink ribbon.
Abstract:
A conveying system for multiple product units conveyed on two parallel conveyors past a sensing section. The sensing section includes multiple line scan sensors which each receive input from both conveyors and a calibration standard object in a thin line scan across the conveyors. Optics include an objective lens and a 1X relay lens divided in two and including a prism between halves. The exit pupil of the objective lens is imaged onto the entrance pupil of the 1X relay lens where a slit is positioned to define an image of the thin portion of the product unit in the sensing area. The optics spread the spectrum perpendicularly to the spatial direction to define a grid received by a CCD camera. The CCD camera and associated CPU operate on the data to bin attenuated pixels, train for filtering by spectral range and employ that training to subsequently train for the establishment of algorithms which sense differences in the filter data between product units of different attributes. Various algorithms are thus prepared for determining color, maturity, blemishes, size and the like.
Abstract:
A method of determining the formulating ratio of metallic or pearlescent pigments to colorants for matching the color of a metallic or pearlescent coating to an target color wherein, the spectral reflectances of a plurality of samples varied in the formulation of colorants and metallic or pearlescent pigments are measured with a goniospectrophotometer and stored in a computer memory beforehand and, in performing a CCM using the stored data, reproduction spectral reflectances are calculated by reflecting the changes in spectral reflectance due to changes in the amount of the metallic or pearlescent pigments.
Abstract:
A two dimensional color pattern which at each point has a definite and unique color value is reproduced on a measurement surface by way of a computer controlled display device for the optical marking of a target region on the measurement surface captured by a color measuring device. The color measuring device is aimed at the measurement surface and the color value of the target region captured by the color measuring device is measured. The coordinates of the target region on the measurement surface are calculated from the measured color value and an optical marker which visually indicates the location of the target region on the measurement surface is reproduced at that location on the measurement surface as defined by the calculated coordinates of the target region. Alignment of the color measurement device is simplified and made possible without the need for laser pointers or cameras.
Abstract:
The following procedures are included: a procedure (1) for measuring a metallic paint color by a multi-angle spectrophotometer and storing the multi-angle colorimetric value Lab* of the paint color, a color classification code to which the paint color belongs, and a computer graphic image in a memory of a computer and a procedure (2) for calling a metallic paint color to be retrieved (this is referred to as the metallic paint color concerned) from the memory by using a paint color name as a keyword. Moreover, in the case of a new color not stored in the memory, the color is measured by a multi-angle spectrophotometer and stored in the memory in accordance with the procedure (1). A screening function (3) is included which previously narrows down paint colors whose approximate colors will be computed by using color classification codes when computing an approximate color of the metallic color concerned.
Abstract:
The instant invention is a process for dying a-non-skin material to match an individual's skin tone. The skin is scanned by any color measuring device which digitalizes the color value and imputes that value into a computer based software program. The software program compares the individual's color value to a-digitalized predetermined library of colorants and a-digitalized predetermined library of non-skin materials. The program considers such things as the properties of the non-skin material to-determine a colorant mix. The colorant mix consists of the particular colorants needed and the quantity of each colorant needed to formulate a color match. The data for the color match is transferred to a computer controlled pumping mixing system which produces the amount of color match needed. The non-skin material is dyed and dried. To ensure that the dyed non-skin material matches the individual's skin tone, the dried non-skin material is then scanned by the color measurement device, given a non-skin material color value, digitalized, and imputed into the software program. The digital non-skin material color value is compared to the individual's color value. If the two values are within an acceptable predetermined range, then the dyed product is finished, if not the dyed product is rejected.
Abstract:
Methods and apparatus for determining accurate hair color classifications and appropriate coloring agents to bring about a selected change of color include a table of hair color classifications, a color measuring instrument to arrive at Hunter L, a and b values for use in identifying a particular classification from the table and a database that identifies appropriate coloring agents based on a selection of coloring actions from a menu and the classifications of hair color.
Abstract:
An apparatus for holding a generally flat color sample in a plurality of fixed and repeatable positions in proximity with the optics of a portable color instrument with a uniform and repeatable force. The apparatus has a platform upon which the portable color instrument is secured, a sample stage with multiple index planes upon which a color sample is placed, and a device which urges a pressure foot against the color sample, thereby holding the color sample in position on the stage with a uniform and repeatable force.
Abstract:
A computer color matching method of paint for measuring a proper formulation of colorants for obtaining a target color or color and luster, or a proper formulation of colorants and luster color materials, directly in a liquid state of paint, without preparing painted panels from adjusted paint, and calculating the adjusted blending ratio easily and accurately, and a paint manufacturing method by using this method.