Abstract:
Techniques for producing and manipulating magnetic fields. The techniques employ the mutual repulsion of magnetic fields to create uniform magnetic fields and to manipulate the uniform magnetic fields. The uniform magnetic field is created between two planar magnets. The planar magnets have cores which describe a closed curve. Like poles of the electromagnets are connected by the cores. When the electromagnets are activated, repulsion between the magnetic fields generated by the electromagnets creates a magnetic field which extends above and below the planes of the planar magnets. If the planar magnets are positioned parallel to each other and aligned so that the magnetic fields generated by the planar magnets repel each other in the space between the planar magnets, the repulsion between the fields generates a resultant field. When the distance between the planar magnets is approximately null the diameter of the closed curve, the resultant field is uniform over a considerable volume of the space between the planar magnets. The uniform field may be manipulated by varying the magnitude and direction of the current provided to the electromagnets. Depending on the number and positions of the electromagnets and how power is supplied to them, the uniform field may be rotated, tilted in the horizontal and/or vertical planes, warped in the horizontal and/or vertical planes, and given gradients in the horizontal and/or vertical planes. The planar magnets may be fitted around the chambers of reactors such as those used for MERIE and the uniform field may be used to manipulate the plasma in the reactor chamber.
Abstract:
An apparatus for non-invasive detection and quantitation of analytes in a sample, such as blood glucose employs a novel amplifier that uses high-gauss permanent magnets to permit an Rf signal to be transmitted through the sample. The concentration of the analyte can be determined from the magnitude of the reduction in the amplitude of the Rf signal at a characteristic frequency.
Abstract:
A structure (40) with switchable magnetic properties comprises: an array of capacitive elements (44) in which each capacitive element (44) includes a low resistance conducting path and is such that a magnetic component (H) of electromagnetic radiation (12) lying within a predetermined frequency band induces an electrical current (j) to flow around said path and through said associated element (44). The size of the elements (44) and their spacing (a) apart are selected such as to provide a predetermined permeability (null) in response to said received electromagnetic radiation (12). Each capacitive element (44) comprises a plurality of stacked planar sections (42) each of which comprises at least two concentric spiral conducting members or tracks (46, 48) which are electrically insulated from each other. A switchable permittivity material, such as Barium Strontium Titanate (BST) is provided between the tracks. The magnetic properties of the structure are switched by applying a dc electrical potential between the conducting tracks.
Abstract:
The present invention provides magnets having a metallic pin mounted therein with high bond strength and with high reliability and exhibiting good productivity. It also provides magnets in which the bond strength of the metallic pin remains high even at high temperatures or in organic solvents. Specifically, the present invention relates to a magnet having a metallic pin mounted therein without using an adhesive, and this magnet can be made by sintering the magnet and the metallic pin at the same time.
Abstract:
A Neodymium-Iron-Boron permanent magnet which is substantially wider across a first axis than across the perpendicular second axis. The second axis is the axis defining the north and south poles of the magnet. At one of the poles is a permalloy cap which is substantially parallel to the first axis and inhibits the extension of magnetic flux from that pole and encourages instead a deep extension of the magnetic flux from the other pole. An aperture penetrates the magnet through the second axis which is wider at the pole away from the permalloy cap than it is at the pole adjacent to the permalloy cap. The shape of this aperture causes a distortion of the deeply extending magnetic flux lines at the pole away from the permalloy cap to be pinched inward toward the second axis rather than being parallel to it. The magnet thus provides a concentrated magnetic force that extends deeply out of its base so that the magnet can be placed on the exterior of a vessel or conduit with the result that the fluid inside is treated with optimized magnetic force.
Abstract:
In an arrangement for adjusting the spatial dependence of a magnetic field in a working volume of a main field magnet (19) by means of ferromagnetic field shaping elements (16), the field shaping elements (16) are formed from foils (1, 5, 7, 8) and/or sheet metals (10) having openings (2, 3) whose shape, position and size are selected such that the shape and the amount of the remaining ferromagnetic material produces a desired spatial dependence of the magnetic field in the working volume of the main field magnet for appropriate positioning of the foils (1, 5, 7, 8) and/or sheet metals (10) relative to the working volume of the main field magnet.
Abstract:
A permanent magnet in which the magnetization direction varies with location to optimize or restrict a magnetic field property in a selected direction at a selected point. The magnetic field property may be, for example, the transverse magnetic field, axial magnetic field, axial gradient of the transverse magnetic field, transverse gradient of the transverse magnetic field, axis gradient of the axial magnetic field, transverse gradient of the axial magnetic field, the product of the transverse magnetic field and the transverse gradient of the transverse magnetic field, the product of the transverse magnetic field and the axial gradient of the transverse magnetic field, the product of the axial magnetic field and the transverse gradient of the axial magnetic field, or the product of the axial magnetic field and the axial gradient of the axial magnetic field. The magnet may be formed of one or more segments in which the magnetization direction varies smoothly and continuously, or the magnet may be formed of a plurality of segments in which the magnetization direction is constant. A method of making and using such magnets is also disclosed.
Abstract:
A unipolar magnetic system has a plurality of external magnetic poles oppositely charged from a plurality of internal magnetic poles forcibly joined together in a unipolar magnet. Included can be a plurality of bipolar magnets juxtaposed forcibly joined together forming a unipolar magnetic solid. The bipolar magnets can be secured to a central nonmagnetic core object forming the unipolar magnetic solid. The plurality of bipolar magnets can include wedge magnets forcibly bound together and secured to nonmagnetic metal core object. The wedge magnets can be secured to the nonmagnetic core metal object by magnetic metal screws. The nonmagnetic core object can be in the form of a cube, polyhedron or other form and the metal can be aluminum, other nonmagnetic metal or other nonmagnetic material. The unipolar magnet can be in the form of a sphere, cube, polyhedron or other form The unipolar magnetic system is applicable to a bi-valved nonmagnetic sphere having radially placed electromagnetic rods wherein the distal ends of the electromagnetic rods line the surface of its hollow cavity creating the internal magnetic field.
Abstract:
A nanocomposite magnet has a composition represented by (Fe1-mTm)100-x-y-z-nQxRyTizMn, where T is at least one of Co and Ni, Q is at least one of B and C, R is at least one rare earth element that always includes at least one of Nd and Pr and optionally includes Dy and/or Tb, and M is at least one element selected from the group consisting of Al, Si, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb. The mole fractions x, y, z, m and n satisfy 10 at %
Abstract:
A flexible permanent magnet containing atomized, generally spherical rare earth magnet particles bonded in a binder resin including a nitrile rubber and precipitated amorphous silica. The bonded permanent magnet exhibits high mechanical flexibility and elasticity, good magnetic properties, and good heat aging, and the magnet powder may be mixed with the binder resin with little to no risk of combustion. In an exemplary embodiment, a permanent magnet composition includes a nitrile rubber with about 23-37% acrylonitrile content, an ethylene vinyl acetate copolymer, a precipitated amorphous silica, and atomized, generally spherical rare earth magnet particles having a size distribution including a median particle size in the range of about 35-55 nullm with a standard deviation in the range of about 10-30 nullm and less than about 0.1% of the particles having a diameter above about 115 nullm. Bonded permanent magnets of the present invention exhibit a percent ultimate elongation greater than about 100%, and even greater than about 200%, thereby providing at least a 10-fold improvement in elasticity concurrently with good magnetic properties.