摘要:
A porous SOG film is formed by preparing an organic silane solution containing an organic silane, water and an alcohol, subjecting the organic silane to acid hydrolysis or alkali hydrolysis and then heat-treating the resulting reaction system in the presence of a surfactant to thus form a porous SiO2 film to use for an interlayer insulating film. Alternatively, a porous SOG film is formed by repeating the foregoing step at least one time; or by forming a hydrophobic film on the porous SiO2 film prepared by the foregoing step by the CVD or sputtering technique to thus cap the surface of the porous film; or repeating the porous film-forming and capping steps at least one time. Moreover, after the preparation of the foregoing porous SiO2 film, it is subjected to either of the oxygen plasma-treatment, electron beam-irradiation treatment and UV light-irradiation treatment to remove the unreacted OH groups remaining on the porous film and to thus form a porous SOG film. Further, the foregoing heat-treatment is carried out in the following two stages: in the first stage, the porous film is treated at a temperature capable of mainly removing the water and the alcohol through evaporation thereof; and in the second stage, the porous SiO2 film is treated at a temperature (350 to 450° C.) sufficient for covering at least the inner walls of the holes with the hydrophobic moieties of the surfactant.
摘要:
According to one embodiment, a measuring system using an optical waveguide is provided. The measuring system has an optical waveguide, magnetic fine particles, a magnetic field applying unit, a light source and a light receiving element. The optical waveguide has a sensing area to which first substances having a property of specifically bonding to subject substances to be measured are fixed. Second substances having a property of specifically bonding to the subject substances are fixed to the magnetic fine particle. The magnetic field applying unit generates a magnetic field for moving the magnetic fine particles. The light source inputs a light into the optical waveguide. The light receiving element receives the light output from the optical waveguide.
摘要:
According to one embodiment, a glucose sensor chip includes an optical waveguide layer on a main surface of a substrate, the optical waveguide layer including a pair of gratings which are separated each other, a sensing film on a surface of a portion of the optical waveguide layer between the pair of the gratings, the sensing film being constituted with a membrane polymer, a cross-linking polymer and a low-molecular compound, the sensing film including a first enzyme which oxidizes or reduces a color forming dye and a glucose, and a second enzyme which reacts with a product of the first enzyme and generates a material which produces the color forming dye.
摘要:
An optical glucose sensor chip includes a substrate, a pair of optical elements formed on a surface of the substrate for introducing light into the substrate and for emitting the light from the substrate, and a glucose sensing membrane formed on the surface of the substrate at a position between the optical elements. The sensing membrane includes a color reagent substrate, a first enzyme which oxidizes or reduces glucose, a second enzyme that generates a material which makes the color reagent substrate exhibit color by a reaction with a product obtained by oxidation or reduction of glucose, a nonionic cellulose derivative, and an ionic polymer into which a buffer is incorporated. At least one of the first and second enzymes is coated with the ionic polymer, and the color reagent substrate. The first and second enzymes, the buffer and the ionic polymer are supported by the nonionic cellulose derivative.
摘要:
A graphite nanofiber material herein provided has a cylindrical structure in which graphene sheets each having an ice-cream cone-like shape whose tip is cut off are put in layers through catalytic metal particles; or a structure in which small pieces of graphene sheets having a shape adapted for the facial shape of a catalytic metal particle are put on top of each other through the catalytic metal particles. The catalytic metal comprises Fe, Co or an alloy including at least one of these metals. The material can be used for producing an electron-emitting source, a display element, which is designed in such a manner that only a desired portion of a luminous body emits light, a negative electrode carbonaceous material for batteries and a lithium ion secondary battery. The electron-emitting source (a cold cathode ray source) has a high electron emission density and an ability of emitting electrons at a low electric field, which have never or less been attained by the carbon nanotube. The negative electrode carbonaceous material for batteries has a high quantity of doped lithium and ensures high charging and discharging efficiencies. Moreover, the lithium ion secondary battery has a sufficiently long cycle life, a fast charging ability and high charging and discharging capacities.
摘要:
A cathode substrate according to the present invention comprises a cathode electrode layer(12), insulator layer(14) and gate electrode layer(15) formed sequentially on a substrate to be processed (11). The insulator layer includes a hole (14a) formed there through. A gate aperture (16) is formed through the gate electrode layer. An emitter (E) is then provided at the bottom of the hole (14a). In this case, the gate aperture comprises a plurality of openings (16a), the total area of which is smaller than the area of top opening of the hole in the insulator layer. The openings are arranged densely at a position opposite to the emitter and just above the hole of the insulator layer.
摘要:
A method for preparing a graphite nanofiber is herein provided, which comprises a raw gases are supplied on the surface of a substrate provided thereon with a catalyst layer for the growth of graphite nanofibers according to the CVD technique, wherein the method is characterized by forming a catalyst layer having a desired thickness and then forming, on the catalyst layer of the substrate, a graphite nanofiber whose overall thickness is controlled and which comprises a graphite nanofiber layer and a non-fibrous layer. The resulting graphite nanofibers can be used in an emitter or a field emission display element. The thickness of the catalyst layer formed on a substrate is controlled by the method and this in turn permits the control of the thickness of the non-fibrous layer formed on the catalyst layer and the control of the thickness of the graphite nanofibers likewise formed on the catalyst layer.
摘要:
An optical glucose sensor chip includes a substrate, a pair of optical elements formed on a surface of the substrate for introducing light into the substrate and for emitting the light from the substrate, and a glucose sensing membrane formed on the surface of the substrate at a position between the optical elements. The sensing membrane includes a color reagent substrate, a first enzyme which oxidizes or reduces glucose, a second enzyme that generates a material which makes the color reagent substrate exhibit color by a reaction with a product obtained by oxidation or reduction of glucose, a nonionic cellulose derivative, and an ionic polymer into which a buffer is incorporated. At least one of the first and second enzymes is coated with the ionic polymer, and the color reagent substrate. The first and second enzymes, the buffer and the ionic polymer are supported by the nonionic cellulose derivative.
摘要:
According to one embodiment, a measuring system using an optical waveguide is provided. The measuring system has an optical waveguide, magnetic fine particles, a magnetic field applying unit, a light source and a light receiving element. The optical waveguide has a sensing area to which first substances having a property of specifically bonding to subject substances to be measured are fixed. Second substances having a property of specifically bonding to the subject substances are fixed to the magnetic fine particle. The magnetic field applying unit generates a magnetic field for moving the magnetic fine particles. The light source inputs a light into the optical waveguide. The light receiving element receives the light output from the optical waveguide.
摘要:
This method of analyzing a biological component includes steps of arranging an extraction medium holding part configured to be capable of holding a prescribed quantity of extraction medium for holding an extract extracted from a subject on the skin of the subject, transferring the extraction medium stored in a liquid storing part storing substantially the same quantity of the extraction medium as the prescribed quantity to the extraction medium holding part, transferring at least part of the extraction medium holding the extracted extract to a reaction part, and analyzing a result of detecting the extract.