Abstract:
A flat panel display having a mesh grid assembly which includes upper and lower spacers integral therein. The flat panel display includes a faceplate and a backplate provided opposing one another with a predetermined gap therebetween to define an exterior of the display. An illuminating assembly is provided in the display, the illuminating assembly realizing predetermined images. A mesh grid is provided between the backplate and the faceplate. A lower spacer is connected to a surface of the mesh grid opposing the backplate to be supported by the backplate. Upper spacers are connected to a surface of the mesh grid opposing the faceplate to be supported by the faceplate. The mesh grid, the lower spacer, and the upper spacers thereby integrally forming a single structural assembly.
Abstract:
A large-area field emission device (“FED”) which is sealed under a predetermined level of vacuum pressure and method for making same includes a large-area substrate, an emitter electrode structure disposed on the substrate such that the emitter structure is disposed over a substantial portion of the substrate, a plurality of groups of micropoints, with each group having a predetermined number of micropoints and with each group being disposed at discrete positions on the emitter electrode structure, an insulating layer disposed over the substrate, with the insulating layer having openings therethrough which have a diameter within a predetermined range, and with each openings surrounding at least a portion a micropoint, an extraction structure disposed on the insulating layer, with the extraction structure having openings therethrough which have a diameter within a predetermined range, with each openings surrounding at least a portion of a micropoint, and with the openings in the extraction structure being aligned with openings in the insulating layer, a faceplate disposed above and spaced away from the extraction structure that is transparent to predetermined wavelengths of light, an indium tin oxide (“ITO”) layer disposed on a surface of the faceplate towards the extraction structure, a matrix member disposed on the ITO layer, with the matrix member defining areas of the ITO surface that are to serve as pixel areas, with the pixel areas being aligned with the micropoints of a group micropoints, cathodoluminescent material disposed on the ITO in a plurality pixel areas, with the cathodoluminescent material at a particular pixel area being aligned to receive electron emitted from the micropoints associated that pixel area, and a plurality of spacers disposed between the faceplate and the extraction structure at predetermined locations, with each spacer having a height and cross-sectional shape commensurate with stresses that spacer will encounter caused by the vacuum pressure within the FED.
Abstract:
A spacer (140) suitable for use in a flat panel display is formed with ceramic, transition metal, and oxygen. At least part of the oxygen is bonded to the transition metal or/and constituents of the ceramic to form a uniform electrically resistive material having a resistivity of 105-1010 ohm-cm and a secondary electron emission coefficient of less than 2 at 2 kilovolts.
Abstract:
A flat panel display includes a faceplate, and a backplate combined with the faceplate to form a vacuum tight cell. An image production unit is provided within the cell to produce display images from the cell. A plurality of spacers are mounted within the cell such that the spaces are placed at a non-display area. The spacers are held between the faceplate and the backplate. A pair of alignment members are connected to the spacers in a body to align the spacers at the non-display area in a constant manner.
Abstract:
Thin films of Ti—Cr—Al—O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O2. Resistivity values from 104 to 1010 Ohm-cm have been measured for Ti—Cr—Al—O film
Abstract:
An electron beam apparatus includes an electron source having an electron-emitting device, an electrode for controlling an electron beam emitted from the electron source, a target to be irradiated with an electron beam emitted from the electron source and a spacer arranged between the electron source and the electrode. The spacer has a semiconductor film on the surface thereof that is electrically connected to the electron source and the electrode.
Abstract:
A large-area field emission device (“FED”) which is sealed under a predetermined level of vacuum pressure and method for making same includes a large-area substrate, an emitter electrode structure disposed on the substrate such that the emitter structure is disposed over a substantial portion of the substrate, a plurality of groups of micropoints, with each group having a predetermined number of micropoints and with each group being disposed at discrete positions on the emitter electrode structure, an insulating layer disposed over the substrate, with the insulating layer having openings therethrough which have a diameter within a predetermined range, and with each openings surrounding at least a portion a micropoint, an extraction structure disposed on the insulating layer, with the extraction structure having openings therethrough which have a diameter within a predetermined range, with each openings surrounding at least a portion of a micropoint, and with the openings in the extraction structure being aligned with openings in the insulating layer, a faceplate disposed above and spaced away from the extraction structure that is transparent predetermined wavelengths of light, an indium tin oxide (“ITO”) layer disposed on a surface of the faceplate towards the extraction structure, a matrix member disposed on the ITO layer, with the matrix member defining areas of the ITO surface that are to serve as pixel areas, with the pixel areas being aligned with the micropoints of a group micropoints, cathodoluminescent material disposed on the ITO in a plurality pixel areas, with the cathodoluminescent material at a particular pixel area being aligned to receive electron emitted from the micropoints associated that pixel area, and a plurality of spacers disposed between the faceplate and the extraction structure at predetermined locations, with each spacer having a height and cross-sectional shape commensurate with stresses that spacer will encounter caused by the vacuum pressure within the FED.
Abstract:
A structure suitable for partial or full use in a spacer (24) of a flat-panel display has a porous face (54). The structure may be formed with multiple aggregates (100) of coated particles (102) bonded together in an open manner to form pores (58). A coating (88) consisting primarily of carbon and having a highly uniform thickness may extend into pores of a porous body (46). The coating can be created by removing non-carbon material from carbon-containing species provided along the pores. A solid porous film (82) whose thickness is normally no more than 20 &mgr;m has a resistivity of 108-1014 ohm-cm. A spacer for a flat-panel display contains a support body (80) and an overlying, normally porous, layer (82) whose resistivity is greater parallel to a face of the support body than perpendicular to the body's face.
Abstract:
Spacers used in a picture display device are formed of a sintered product having a structure in which at least one kind of metal selected from the group consisting of Si, Zn, Al, Sn, Cu and Mg is dispersed in a glass. In the picture display device using spacers, therefore, the spacers are effectively prevented from being electrically charged and, besides, trouble such as distortion in the displayed picture caused by the electric charge in the spacers is effectively prevented, too. In producing the spacers by firing, further, the volume expands due to the oxidation of the metal component, whereby shrinkage due to firing is effectively relaxed, making it possible to produce the spacers maintaining a high dimensional precision. Besides, the spacers are effectively prevented from being deformed by the shrinkage caused by firing.
Abstract:
An image forming apparatus includes a first substrate and a second substrate disposed opposite to the first substrate, with fluorescent material being provided on the second substrate. A matrix wiring having a plurality of first wires and a plurality of second wires is provided, with each of the first wires located on the first substrate, and each of the second wires intersecting the plurality of first wires. Also included are electron-emitting devices, each of which emit an electron by applying a signal to the matrix wiring, and a metal electrode, having a plate-shaped form, provided above the matrix wiring, with the metal electrode having electron through-holes for passing electrons emitted by the electron-emitting devices. A support member, having a plate-shaped form, is provided on the metal electrode, wherein the metal electrode is arranged in parallel to the first substrate and a longitudinal direction of a cross section of the support member and a longitudinal direction of a cross-section of the metal electrode are perpendicular and intersect both of the metal electrode and the support member.