摘要:
A structure suitable for partial or full use in a spacer (24) of a flat-panel display has a porous face (54). The structure may be formed with multiple aggregates (100) of coated particles (102) bonded together in an open manner to form pores (58). A coating (88) consisting primarily of carbon and having a highly uniform thickness may extend into pores of a porous body (46). The coating can be created by removing non-carbon material from carbon-containing species provided along the pores. A solid porous film (82) whose thickness is normally no more than 20 &mgr;m has a resistivity of 108-1014 ohm-cm. A spacer for a flat-panel display contains a support body (80) and an overlying, normally porous, layer (82) whose resistivity is greater parallel to a face of the support body than perpendicular to the body's face.
摘要:
A structure that is suitable for partial or full use in a spacer of a flat-panel display. The structure may be formed with a porous body having a face along which multiple primary pores extend into the porous body. A coating consisting primarily of carbon and having a highly uniform thickness overlies the porous body's face, extending along the primary pores to coat their surfaces and converting the primary pores into further pores. The coating can be created by removing non-carbon material from carbon-containing species provided along the pores. A solid porous film whose thickness is normally no more than 20 &mgr;m has a resistivity of 108-1014 ohm-cm. A spacer for a flat-panel display contains a support body and an overlying, normally porous, layer whose resistivity is greater parallel to a face of the support body than perpendicular to the body's face.
摘要:
A flat-panel display is fabricated according to a process in which a liquid-containing film (92, 116, 124, 132, 144, or 166) is formed over a substrate (80). In addition to suitable liquid, the liquid-containing film contains oxide or/and hydroxide. Liquid is removed from the liquid-containing film to convert it into a solid porous film (82 or 150) having (a) a porosity of at least 10% along an exposed face of the film, (b) an average resistivity of 108-1014 ohm-cm at 25° C., and (c) an average thickness of no more than 20 &mgr;m. A spacer (24) formed with at least a segment of the substrate and overlying solid porous film is positioned between opposing first and second plate structures (20 and 22) of the display. The second plate structure (22) emits light upon receiving electrons emitted by the first plate structure (20).
摘要:
Vacuum insulation panels and methods for making vacuum insulation panels. The panels include first and second spaced-apart sidewalls, where at least one of the sidewalls has a very smooth surface. The panels are particularly useful as insulation in applications where a smooth and aesthetically acceptable surface is required, such as in a refrigeration appliance. A method for making a vacuum insulation panel can include placing an insulative core material and a liner within a barrier envelope defining an enclosure, evacuating the enclosure, and sealing the envelope to form the vacuum insulation panel.
摘要:
A process for treating silica dielectric film on a substrate, which includes reacting a suitable hydrophilic silica film with an effective amount of a multifunctional surface modification agent. The film is present on a substrate and optionally has a pore structure with hydrophilic pore surfaces, and the reaction is conducted for a period of time sufficient for said surface modification agent to penetrate said pore structure and produce a treated silica film having a dielectric constant of about 3 or less, wherein the surface modification agent is hydrophobic and suitable for silylating or capping silanol moieties on such hydrophilic surfaces. Dielectric films and integrated circuits including such films are also disclosed.
摘要:
The present invention relates to low dielectric constant nanoporous silica films and to processes for their manufacture. A substrate, e.g., a wafer suitable for the production of an integrated circuit, having a plurality of raised lines and/or electronic elements present on its surface, is provided with a relatively high porosity, low dielectric constant, silicon-containing polymer film composition.
摘要:
The present invention relates to nanoporous dielectric films and to a process for their manufacture. A substrate having a plurality of raised lines on its surface is provided with a relatively high porosity, low dielectric constant, silicon containing polymer composition positioned between the raised lines and a relatively low porosity, high dielectric constant, silicon containing composition positioned on the lines.
摘要:
Processes for producing gel compositions comprising: esterifying a portion of the surface of a gel composition sufficient to produce a gel composition having a rod density of less than or equal to 0.15 g/cc, and/or a tap density of less than or equal to 0.2 g/cc through contact with at least one esterification agent and at least one catalyst. The processes may be utilized to produce low density gel compositions without the need for a supercritical drying step or thermal treatment.
摘要:
A process for producing surface modified metal oxide and/or organo-metal oxide compositions comprising esterifying at least a portion of the metal oxide and/or organo-metal oxide composition through contact with at least one esterification agent and at least one catalyst wherein the esterification agent and the catalyst are in the liquid phase. The process may be utilized to produce hydrophobic metal oxide and/or organo-metal oxide compositions at ambient temperature and/or ambient pressure conditions.
摘要:
Improved processes for forming hydrophobic nanoporous dielectric coatings on substrates are provided. The improved processes involve forming a reaction mixture that combines at least one mono-, di- or trifunctional precursor with at least one tetrafunctional precursor, recovering the reaction product, and then depositing the reaction product onto a suitable substrate, followed by gelling of the deposited film. Precursors include alkoxy, acetoxy and halogen leaving groups. Optional processes to enhance the hydrophobicity of a nanoporous silica film are also provided, as well as improved nanoporous silica films, coated substrates and integrated circuits prepared by the new processes