Abstract:
A method is disclosed for treating a residual stream from bisphenol manufacture, wherein the residual stream comprises unreacted phenols, bisphenol isomers, trisphenols, organic sulfides and water. The method comprises contacting at least a portion of the residual stream or a reaction product thereof with an acidic catalyst under conditions sufficient to allow acid-catalyzed hydrolysis of organic sulfides in the residual stream to the corresponding thiols and produce an effluent stream, and then distilling at least a portion of the effluent stream to recover distillate products comprising phenols and thiols and produce a bottoms product comprising bisphenol isomers and trisphenols, and having a lower content of organic sulfides than the residual stream.
Abstract:
Methods of isolating phenols from phenol-containing media. The methods include combining a phospholipid-containing composition with the phenol-containing medium to generate a combined medium, incubating the combined medium to precipitate phenols in the combined medium and thereby form a phenol precipitate phase and a phenol-depleted phase, and separating the phenol precipitate phase and the phenol-depleted phase. The methods can further include extracting phenols from the separated phenol precipitate phase. The extracting can include mixing the separated phenol precipitate phase with an extraction solvent to solubilize in the extraction solvent at least a portion of the phenols originally present in the phenol precipitate phase.
Abstract:
Provided is a method of decomposing phenolic by-products, and more particularly, a method of decomposing phenolic by-products including: supplying a phenolic by-product stream to a decomposition device to perform thermal decomposition; separating an upper discharge stream including effective components and a lower discharge stream including materials having a high boiling point in the decomposition device; supplying the lower discharge stream from the decomposition device, a side discharge stream from the decomposition device, and a process water stream to a mixing device and mixing these streams; and supplying a discharge stream from the mixing device to a layer separation device to separate the discharge stream from the mixing device into an oil phase and an aqueous phase.
Abstract:
Methods of isolating phenols from phenol-containing media. The methods include combining a phospholipid-containing composition with the phenol-containing medium to generate a combined medium, incubating the combined medium to precipitate phenols in the combined medium and thereby form a phenol precipitate phase and a phenol-depleted phase, and separating the phenol precipitate phase and the phenol-depleted phase. The methods can further include extracting phenols from the separated phenol precipitate phase. The extracting can include mixing the separated phenol precipitate phase with an extraction solvent to solubilize in the extraction solvent at least a portion of the phenols originally present in the phenol precipitate phase.
Abstract:
Raw cannabis plant material is mixed with ethanol and spun-dry to extract cannabinoids. The ethanol may be chilled before adding it to the raw cannabis plant material, and a non-polar solvent stage may be used to increase the yield of the extraction. The resulting crude oil and ethanol with the dissolved cannabinoids is separated from the raw cannabis plant material and filtered to remove particulates, waxes, lipids, fats and dissolved impurities. The ethanol is then evaporated from the resulting mixture of oil and ethanol, and the remaining oil then undergoes brine-washing, decarboxylation and distillation to obtain the cannabinoids and other desirable volatile phytochemicals.
Abstract:
In a process for producing phenol, cyclohexylbenzene is contacted with an oxygen-containing compound in the presence of an oxidation catalyst comprising a cyclic imide under oxidation conditions effective to produce a product comprising cyclohexylbenzene hydroperoxide and unreacted cyclic imide catalyst. Without removing all the unreacted cyclic imide catalyst, at least a portion of the product is contacted with an acidic molecular sieve under conditions effective to adsorb at least a portion of the unreacted cyclic imide and to convert at least part of the cyclohexylbenzene hydroperoxide in the product portion into phenol and cyclohexanone.
Abstract:
The present invention is directed to a composition comprising a tris-hydroxyaryl compound having a metal ion impurity content of less than 10 ppm and to a process for the purification of tris-hydroxyaryl compound having a metal ion impurity, comprising at least the following steps: a) conditioning a sulphonic acid group-containing active ion exchanger with a solvent which is suitable for the handling of the tris-hydroxyaryl compounds, b) producing a solution of the tris-hydroxyaryl compounds to be purified in a solvent which is suitable for the handling of the tris-hydroxyaryl compounds, c) contacting the tris-hydroxyaryl compound-containing solution from b) with the conditioned ion exchanger from a), d) separating the tris-hydroxyaryl compound-containing solution from c) from the conditioned ion exchanger, e) removing at least part of the solvent from the solution of the tris-hydroxyaryl compound separated in d) under low temperature stress.
Abstract:
The process provided herein is concerned with recovery of hydrocarbons from sulfones using an individual alkali and alkaline-earthy base and a mixture of thereof. As the starting materials are sulfones generated by ODS and commercially inexpensive alkali and alkaline-earth bases, the cost and ecological impact of solid waste disposal is minimized.