Low cost lean production bainitic steel wheel for rail transit, and manufacturing method therefor

    公开(公告)号:US11434553B2

    公开(公告)日:2022-09-06

    申请号:US16314394

    申请日:2017-07-06

    Abstract: The present invention discloses a low cost lean production bainitic steel wheel for rail transit and a manufacturing method therefor. The steel wheel contains elements with the following weight percentages: carbon C: 0.15-0.45%, silicon Si: 1.00-2.50%, manganese Mn: 1.20-3.00%, rare earth RE: 0.001-0.040%, phosphorus P≤0.020%, and sulphur S≤0.020%, where the remaining is iron and unavoidable residual elements, and 3.00%≤Si+Mn≤5.00%. Compared with the prior art, through alloying design and a preparation process, especially a heat treatment process and technology, a rim of the wheel obtains a carbide-free bainite structure, and a web and a wheel hub obtain granular bainite, a supersaturated ferritic structure, and a small amount of pearlite. The wheel has high comprehensive mechanical properties and service performance. In addition, the heat treatment process and technology are fully used without particularly adding alloying elements such as Mo, Ni, V, Cr, and B, to greatly reduce costs of steel and realize lean production.

    SHAFT PART
    7.
    发明申请

    公开(公告)号:US20210285078A1

    公开(公告)日:2021-09-16

    申请号:US16330655

    申请日:2017-09-20

    Abstract: A shaft part excellent in static torsional strength and torsional fatigue strength containing, by mass %, essential elements of C: 0.35 to 0.70%, Si: 0.01 to 0.40%, Mn: 0.5 to 2.6%, P: 0.050% or less, S: 0.005 to 0.020%, Al: 0.010 to 0.050%, N: 0.005 to 0.025%, and O: 0.003% or less, further containing optional elements, having a balance of Fe and impurities, having a chemical composition satisfying formula (1), having at least one hole at an outer circumferential surface, having a volume ratio (R1) of 4 to 20% of retained austenite at a position of a 2 mm depth from the outer circumferential surface, having a volume ratio of retained austenite at a position of a 2 mm depth from the outer circumferential surface in an axial direction of the hole and at a position of a 20 μm depth from the surface of the hole as R2, and having a reduction rate Δγ of 40% or more of retained austenite found by the formula (A): Δγ=[(R1−R2)/R1]×100: Formula (1): 15.0≤25.9C+6.35Mn+2.88Cr+3.09Mo+2.73Ni≤27.2 (Notations of elements in formula are contents of the elements)

Patent Agency Ranking