Abstract:
An article comprising additively manufactured metal portions is described. The article comprises a first additively manufactured metal portion, and a second additively manufactured metal portion coupled to the first additively manufactured metal portion at a welded joint. The article further comprises a resistive heating material disposed within an interior of the welded joint, the resistive heating material comprising a different material than the first additively manufactured metal portion and the second additively manufactured metal portion.
Abstract:
The welding operation monitoring system includes an image capturing device that is disposed on a side opposite to a side to which the plasma flow is supplied out of a pipe inside and a pipe outside of the strip-shaped steel sheet formed in a tubular shape, and is configured to capture a color image including a plasma flow over the V-shaped region; and a welding operation monitoring device that is configured to generate a specific color component image obtained by extracting a specific color component from the color image, and specifies a V-shaped display region, which is a region corresponding to the V-shaped region within the color image, on the basis of the V-shaped region shown in the specific color component image, thereby analyzing a state of the welding operation.
Abstract:
A ring forming step includes welding opposite ends of a band saw blade including a body part having a band shape, and a tooth part including a plurality of teeth formed on one side part of the body part, to form a ring shape. A polishing step includes polishing an inner surface, an outer surface, and an end face on a side opposite to the tooth part in the ring-shaped band saw blade subjected to the ring formation. A tip tooth tip forming step includes positioning, after the polishing step, the ring-shaped band saw blade subjected to the ring formation by use of one of the inner surface and the outer surface, and the end face as references, joining a cutting tip to tooth tips of the plurality of teeth by welding, and polishing the joined cutting tip to form a tooth tip shape.
Abstract:
An ironing plate is attached to a friction stir welding apparatus in such a manner that the ironing plate surrounds an outer peripheral portion of a rotating tool and does not rotate together with the rotating tool, an inside diameter of a portion of the ironing plate into which the rotating tool is inserted is larger than the diameter of the rotating tool, and a material inflow path through which an excessive material of two metallic plates flows in is formed between the ironing plate and the rotating tool when the ironing plate is disposed to surround the outer peripheral portion of the rotating tool.
Abstract:
A method of monitoring a manufacturing status of an electric resistance welded pipe manufactured by shaping a steel strip into a pipe and butt welding both end parts of the steel strip in a width direction along a lengthwise direction includes: arranging an imaging unit in a gas shield nozzle having an opening opposing a region in which both of the end parts of the steel strip in the width direction are butt welded and shielding the region with inert gas by ejecting the inert gas onto the region through the opening, the imaging unit having a visual filed including the region; and determining quality of a butt-welded part based on an image shot by the imaging unit.
Abstract:
Provided are an electric resistance welded stainless clad steel manufactured by forming a hot-rolled steel strip of clad steel including low-carbon low-alloy steel and stainless steel into a cylindrical shape, and electric resistance welding the edges of the hot-rolled steel strip, characterized in that the flattening characteristic of an electric resistance weld, as-welded, satisfies the formula h/D
Abstract:
A series of time-sequenced heat energy data arrays or data stream sets of a weld process region are processed by a weld data array or data stream processing system to produce a heat energy data set output that is related to weld process region features or weld process region heat energy data. The heat energy data set output can be displayed to a system user and modified by system user input to the weld data array or data stream processing system; alternatively, or in combination, the system user output and input, the heat energy data set output, or data produced from the heat energy data set output by the weld data array or data stream processing system, can be transmitted to a weld process controller to adjust parameters in the weld process responsive to the output of the weld data array or data stream processing system.
Abstract:
An electric resistance welded steel pipe having an identifiable seam portion and a method for manufacturing the same. The electric resistance welded steel pipe includes a steel pipe portion with a seam portion, which is formed by electric resistance welding, and a coating portion of zinc phosphate. The coating portion covers at least an outer surface side of the steel pipe portion. A part of the coating portion that is immediately above the seam portion forms a color difference portion that has a width W along a pipe circumferential direction of greater than or equal to 0.1 times a wall thickness of the pipe and less than or equal to the wall thickness of the pipe. The color difference portion has a visually identifiable color difference from the other parts of the coating portion.
Abstract:
An electric resistance welded steel pipe which has sufficient strength and low-temperature toughness and a low yield ratio and which is suitable as a line pipe to be laid in depths of the sea, characterized in that: the composition of the base material contains, in mass %, 0.05 to 0.10% of C, 1.00 to 1.60% of Mn, and 0.005 to less than 0.035% of Nb, and has a Ceq value of 0.23 to 0.38; and the metal microstructure of the base material contains 3 to 13% of martensite in area fraction with the balance being ferrite.
Abstract:
A high-strength thick-walled electric resistance welded steel pipe has excellent low-temperature toughness and excellent HIC resistance and a yield strength of 400 MPa or more.The steel has a chemical composition consisting of C: 0.025% to 0.084%, Si: 0.10% to 0.30%, Mn: 0.70% to 1.80%, controlled amounts of P, S, Al, N, and O, Nb: 0.001% to 0.065%, V: 0.001% to 0.065%, Ti: 0.001% to 0.033%, and Ca: 0.0001% to 0.0035% on a mass percent basis and the remainder being Fe and incidental impurities, and satisfies Pcm of 0.20 or less.