METHOD OF ALUMINUM-SCANDIUM ALLOY PRODUCTION

    公开(公告)号:US20250059663A1

    公开(公告)日:2025-02-20

    申请号:US18623827

    申请日:2024-04-01

    Abstract: Disclosed methods relate to producing an aluminum-scandium (Al—Sc) alloy. A method can include providing an electrolyte bath comprising a first portion of at least one of ScF3 or AlF3 and a first portion of at least one of LiF, NaF, or KF; providing a cathode in electrical contact with the electrolyte bath; providing an anode in electrical contact with the electrolyte bath; adding a first portion of Sc2O3 into the electrolyte bath; reacting an aluminum ion with the cathode; applying an electric current to the cathode, thereby reacting a scandium ion with the cathode to produce the Al—Sc alloy.

    Apparatus and method for operating an electrolytic cell

    公开(公告)号:US12203187B2

    公开(公告)日:2025-01-21

    申请号:US17680063

    申请日:2022-02-24

    Abstract: An apparatus, also named transfer box or TB, for conveying an anode assembly outside of an electrolyte cell is described. An apparatus, also named cell preheater lifting beam or CPLB, for conveying an anode assembly or a cell pre-heater outside of an electrolyte cell is also disclosed. TB and CPLB are conjointly used for starting up the electrolytic cell or for replacing a spent anode assembly while maintaining the production of non-ferrous metal, such as aluminum or aluminium. The thermal insulation of the TB allows maintaining the anode temperature homogeneity and preventing thermal shocks when introducing the inert anodes into the hot electrolytic bath. TN and CPLB allow accurate positioning of anode assemblies or cell-preheaters over the electrolysis cell before achieving mechanical and electrical connections of the anode assembly or the cell pre-heater to the electrolysis cell. Several related methods for the operation of an electrolytic cell are also disclosed.

    COMPACT APPARATUS FOR PRODUCTION OF IRON METAL BY ELECTROLYSIS

    公开(公告)号:US20250019850A1

    公开(公告)日:2025-01-16

    申请号:US18714286

    申请日:2021-12-15

    Applicant: ArcelorMittal

    Abstract: An apparatus (1) for the production of iron metal through reduction of iron ore by an electrolysis reaction the apparatus including a casing (4) including successively a terminal anode plate (2) at a first end of the casing (4), such anode being connected to a source of electric power, at least one bipolar electrode (11) including successively a cathode plate (3), a metallic plate (12), a gas recovery part (8) and a gas permeable anode plate (2) and a terminal cathode plate (3) at the other end of said casing (4), such cathode being connected to the source of electric power.

    METHODS AND SYSTEMS OF CONTROLLING BIDIRECTIONAL OPERATION OF AN ELECTROWINNING PLANT

    公开(公告)号:US20250011959A1

    公开(公告)日:2025-01-09

    申请号:US18763736

    申请日:2024-07-03

    Abstract: Methods and systems of the present disclosure are generally directed to switching operation of one or more electrochemical cells of an electrowinning plant between a charge mode and a discharge mode. In the charge mode, the one or more electrochemical cells may reduce metal from an oxidized state to a zero valence state with a first electric current applied across the one or more electrochemical cells. In the discharge mode, the one or more electrochemical cells may oxidize at least some of the metal from the zero valence state to the oxidized state to generate a second electric current, oppositely charged relative to the first electric current, to generate electricity (e.g., for delivery to the grid). Operation of the one or more electrochemical cells of the electrowinning plant may be selectively changed between the charge mode and the discharge mode based on, for example, availability/cost of electricity from the grid.

    Electrolytic reduction system and method of vanadium electrolyte

    公开(公告)号:US12166253B2

    公开(公告)日:2024-12-10

    申请号:US17567966

    申请日:2022-01-04

    Abstract: Disclosed are an electrolytic reduction system of a vanadium electrolyte and a method for producing the electrolyte. The electrolytic reduction system includes a separating device and an electrolytic tank. The separating device is configured to separate a mixture consisting of a vanadium pentoxide (V2O5) solid and a sulfate acid solution, thereby obtaining a vanadium solution from a liquid discharging port of the separating device and a vanadium solid from a solid discharging port. The vanadium solution includes pentavalent vanadium ions. The electrolytic tank connects to the liquid discharging port of the separating device to contain the vanadium solution. In the method for producing the vanadium electrolyte, other chemical reagents are unnecessarily to be added into the mixture, and the vanadium solution is subjected to an electrolytic reduction process, such that the pentavalent vanadium ions are reduced to tetravalent vanadium ions and trivalent vanadium ions in the electrolytic tank.

Patent Agency Ranking