NUCLEAR MAGNETIC RESONANCE (NMR) FLUID SUBSTITUTION USING MACHINE LEARNING

    公开(公告)号:US20230133700A1

    公开(公告)日:2023-05-04

    申请号:US17514654

    申请日:2021-10-29

    发明人: Songhua Chen Wei Shao

    摘要: System and methods for nuclear magnetic resonance (NMR) fluid substitution are provided. NMR logging measurements of a reservoir rock formation are acquired. Fluid zones within the reservoir rock formation are identified based on the acquired measurements. The fluid zones include water zones comprising water-saturated rock and at least one oil zone comprising rock saturated with multiphase fluids. Water zones having petrophysical characteristics matching those of the oil zone(s) within the formation are selected. NMR responses to multiphase fluids resulting from a displacement of water by hydrocarbon in the selected water zones are simulated. A synthetic dataset including NMR T2 distributions of multiphase fluids is generated based on the simulation. The synthetic dataset is used to train a machine learning (ML) model to substitute NMR T2 distributions of multiphase fluids with those of water. The trained ML model is applied to the NMR logging measurements acquired for the oil zone(s).

    Multi-state magnetic resonance fingerprinting

    公开(公告)号:US11579230B2

    公开(公告)日:2023-02-14

    申请号:US16468849

    申请日:2017-12-06

    摘要: The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (142) from a subject (118) within a measurement zone (108). The magnetic resonance imaging system (100) comprises: a processor (130) for controlling the magnetic resonance imaging system (100) and a memory (136) storing machine executable instructions (150, 152, 154), pulse sequence commands (140) and a dictionary (144). The pulse sequence commands (140) are configured for controlling the magnetic resonance imaging system (100) to acquire the magnetic resonance data (142) of multiple steady state free precession (SSFP) states per repetition time. The pulse sequence commands (140) are further configured for controlling the magnetic resonance imaging system (100) to acquire the magnetic resonance data (142) of the multiple steady state free precession (SSFP) states according to a magnetic resonance fingerprinting protocol. The dictionary (144) comprises a plurality of tissue parameter sets. Each tissue parameter set is assigned with signal evolution data pre-calculated for multiple SSFP states.

    Method and Apparatus for Measuring Brain Free Water Content and MRI System

    公开(公告)号:US20230038549A1

    公开(公告)日:2023-02-09

    申请号:US17876734

    申请日:2022-07-29

    摘要: In a method for measuring brain free water content, in response to an RF excitation field generated on the basis of a magnetic resonance fingerprinting sequence and applied to the brain, an equilibrium magnetization mixed term (M0) signal is acquired from radiation emitted by each excited voxel of the brain, to obtain an M0 value of each voxel of the brain; a receive coil sensitivity (RP) value of each voxel of the brain is acquired; the M0 value of each voxel of the brain is divided by the RP value of the corresponding voxel to obtain a proton density (PD) value of each voxel of the brain; a PD value of cerebrospinal fluid is taken to be a reference PD value; and the PD value of each voxel of the brain is divided by the reference PD value to obtain the free water content of each voxel of the brain. The method advantageously increases the speed and accuracy of measurement of brain free water content.

    Method and apparatus for generating a T1/T2 map

    公开(公告)号:US11543478B2

    公开(公告)日:2023-01-03

    申请号:US16783531

    申请日:2020-02-06

    摘要: A method and apparatus for generating a T1 or T2 map for a three-dimensional (3D) image volume of a subject. The method includes acquiring first, second, and third 3D images of the image volume of the subject. Signal evolutions of voxels through the first to third 3D images by comparing voxel intensity levels of corresponding voxel locations in the first, second, and third 3D images. A simulation dictionary representing the signal evolutions for a number of different tissue parameter combinations is obtained. The T1 or T2 map is generated by comparing the determined signal evolutions to entries in the dictionary and by finding, for each of the determined signal evolutions, the entry in the dictionary that best matches the determined signal evolution.

    Wettability estimation using T2 distributions of water in wetting and non-wetting phases

    公开(公告)号:US11493461B1

    公开(公告)日:2022-11-08

    申请号:US17360009

    申请日:2021-06-28

    IPC分类号: G01N24/08 G01N13/00 G01R33/50

    摘要: A method of estimating a wettability characteristic of a rock material includes acquiring a plurality of T2 distributions based on nuclear magnetic resonance (NMR) measurements of a rock material under a plurality of fluid saturated rock conditions, constructing a measurement matrix based on the plurality of T2 distributions, and performing non-negative factorization of the measurement matrix to determine feature components. The method also includes reconstructing the plurality of T2 distributions based on the feature components, and extracting a first set of T2 distributions associated with mobile water under a wetting condition and a second set of T2 distributions associated with mobile water under a non-wetting condition based on the feature components, and calculating a wettability index (WI) based on the first extracted set of T2 distributions and the second extracted set of T2 distributions.

    Synthetic bright-blood and dark-blood PSIR LGE images

    公开(公告)号:US11454691B1

    公开(公告)日:2022-09-27

    申请号:US17472838

    申请日:2021-09-13

    IPC分类号: G01R33/56 G01R33/50

    摘要: Systems and methods to determine a first map of a first parameter based on first signals acquired by a magnetic resonance imaging system, the first map associating each of a plurality of voxels with a respective value of the first parameter, the first parameter quantifying a first physical characteristic of an object represented by the plurality of voxels, determine a second map of a second parameter based on the first signals, the second map associating each of the plurality of voxels with a respective value of the second parameter, the second parameter quantifying a second physical characteristic of the object, and determine a dark-blood phase-sensitive inversion recovery late gadolinium enhancement image based on the first map of the first parameter and on the second map of the second parameter.

    Simplified navigation of spinal medical imaging data

    公开(公告)号:US11432736B2

    公开(公告)日:2022-09-06

    申请号:US16465629

    申请日:2017-12-05

    摘要: The invention provides for a medical imaging system (700) comprising: a memory (734) for storing machine executable instructions (740), a display (732) for rendering a user interface (800), and a processor (730). Execution of the machine executable instructions causes the processor to receive (1000) three dimensional medical image data (746) descriptive of a region of interest (709) of a subject (718). The region of interest comprises a spine (200). Execution of the machine executable instructions further causes the processor to receive (1002) a set of spinal coordinate systems (748) each descriptive of a location and an orientation of spinal vertebrae in the three dimensional medical image data. The set of spinal coordinate systems further comprises a set of spine centerline positions (102) each positioned on a spine centerline (108). Execution of the machine executable instructions further causes the processor to receive (1004) a mapping (750) between the set of spinal coordinate systems and a simplified coordinate system. The simplified coordinate system comprises a spinal height (300) descriptive of a position along the spine centerline. The simplified coordinate system further comprises a rotational orientation relative to a local vertebrae orientation. The simplified coordinate system further comprises an offset from the spine centerline. Execution of the machine executable instructions further cause the processor to repeatedly receive (1006) a simplified coordinate (752) of the simplified coordinate system from the user interface. Execution of the machine executable instructions further cause the processor to repeatedly calculate (1008) a spinal image rendering (754). Calculating the spinal image rendering comprises using the mapping to transform the simplified coordinate into the set of spinal coordinate systems to determine an image location in the three dimensional medical image data. Execution of the machine executable instructions further cause the processor to repeatedly render (1010) the spinal image rendering on the display.