摘要:
A technique for producing a coherent beam of hard X-rays is provided. This technique is based on a short wavelength undulator that uses the fields of an electromagnetic wave to deflect a relativistic electron beam along a sinusoidal trajectory in order to cause it to emit X-rays. The undulator consists of a slow-wave structure that is energized by a second counterpropagating electron beam. Cylindrical and planar structure configurations are provided and also a mechanism for electrical and mechanical tuning to allow control over the wavelength of the emitted X-ray beam.
摘要:
This disclosure relates to the production of coherent waves of electromagnetic radiation, especially of short wavelengths including X rays, in the form of pulses or continuous beams, utilizing mutually interacting beams of charged particles that include positive ions and electrons. The atoms of which the ions are formed exist in states of excitation energy by virtue of their ionization. The ions capture electrons as the two beams interact, thereby becoming capable of undergoing de-excitation and emitting characteristic electromagnetic radiation. When heavy elements and a high degree of ionization are involved, the radiation so produced can be of high frequency; often X rays. The radiation energies can be of large natural widths which make conditions favorable for the emissions to be composed into a coherent pulse or beam. Despite the extremely short life times of the excited states, the required level of population inversion of the laser medium can be achieved by a specialised approach; population inversion is generated in a limited region on the laser medium, a beam of highly positive ions, by flooding the region with electrons drawn out from an adjacent beam. The population so formed in a region is advanced along the medium, region to region, in synchronization with the progress of the coherent photons. A preferred mode of the invention that generates a coherent X ray pulse of 11.2 keV photons having an energy output of 3.6 J and a power rating 360 GW is described.
摘要:
A radioactive light source consists of a vacuum tight envelope filled with a mixture of a radioactive gas such as tritium with one or more other gases which luminesce when excited by the emission from the radioactive gas without the aid or requirement of any externally applied energy source, such as electrical power. This luminescence may be viewed through the wall of the chamber which may be transparent. Alternatively, all or a part of the luminescence may be converted to a different region of the spectrum by a suitable phosphor layer coated on the wall of the envelope.
摘要:
Apparatus and methods are disclosed for amplifying an energy beam such as a beam of laser light or a charged particle beam. An exemplary method includes providing a liner having a first end, a second end, a liner axis, and a lumen extending along the liner axis and being bound by interior reflective walls of the liner. An energy beam is introduced into the first end of the liner. The beam propagates through the lumen from the first end to the second end as the beam reflects multiple times from the interior walls of the liner. Meanwhile, an implosive force is applied to the liner. The implosive force compresses the interior walls implosively toward the liner axis in a manner that amplifies the beam as the beam propagates through the lumen of the imploding liner. The amplified energy beam can be used for any of various purposes including ignition of a fusion target.
摘要:
A radioluminescent light source comprising a crystalline III-V or II-VI semiconductor or a group IV quantum semiconductor and a radioactive element adapted to cause the semiconductor to produce light is disclosed. The radioactive element, such as tritium, is either incorporated within the semiconductor, preferably proximate to the p-n junction of the semiconductor, or placed adjacent the semiconductor.
摘要:
A radiation monitor 1 includes a light-emitting unit 10 which generates light having an intensity depending on an amount of an incident radiation, an optical fiber 20 which sends a photon generated by the light-emitting unit 10, a photoelectric converter 30 which transmits one electric pulse to one sent photon, a dose calculation device 40 which counts the electric pulse amplified by the photoelectric converter 30 and converts the counted value of the measured electric pulses into a dose of the radiation, and a display device 50. The dose calculation device 40 counts the electric signals converted from the photon by the photoelectric converter 30 to calculate a counting rate, and stops the counting when the counting rate exceeds a predetermined threshold, and performs counting when the counting rate is less than the threshold.
摘要:
A method for producing electromagnetic radiation comprising: firing a first laser pulse and generating a plasma region, the first laser pulse penetrating at least partially into the plasma region to create a plasma density wake in the plasma region; providing a group of charged particles in the plasma region arranged so as to be accelerated in the plasma density wake of the first laser pulse; reflecting the first laser pulse after the first laser pulse has penetrated into the plasma region, to give a reflected laser pulse; and arranging the reflected laser pulse to interact with the group of charged particles to generate an electromagnetic radiation.
摘要:
A method for producing electromagnetic radiation comprising: firing a first laser pulse and generating a plasma region, the first laser pulse penetrating at least partially into the plasma region to create a plasma density wake in the plasma region; providing a group of charged particles in the plasma region arranged so as to be accelerated in the plasma density wake of the first laser pulse; reflecting the first laser pulse after the first laser pulse has penetrated into the plasma region, to give a reflected laser pulse; and arranging the reflected laser pulse to interact with the group of charged particles to generate an electromagnetic radiation.
摘要:
A radiation monitor 1 includes a light-emitting unit 10 which generates light having an intensity depending on an amount of an incident radiation, an optical fiber 20 which sends a photon generated by the light-emitting unit 10, a photoelectric converter 30 which transmits one electric pulse to one sent photon, a dose calculation device 40 which counts the electric pulse amplified by the photoelectric converter 30 and converts the counted value of the measured electric pulses into a dose of the radiation, and a display device 50. The dose calculation device 40 counts the electric signals converted from the photon by the photoelectric converter 30 to calculate a counting rate, and stops the counting when the counting rate exceeds a predetermined threshold, and performs counting when the counting rate is less than the threshold.
摘要:
A tapering enhanced stimulated superradiant amplification method and system which utilizes a strongly tapered undulator in reaching significant power outputs and conversion efficiencies. TESSA dramatically increases conversion/amplification efficiencies by violently (sharply) decelerating electrons and taking advantage of produced radiation to further drive interaction toward as it takes advantage of produced radiation to further drive interaction to increase overall radiation output. The system and method configures a strongly tapered undulator to operate in a new mode that is above normal input saturation levels to provide an amplified output with unexpectedly high efficiencies and power.