Abstract:
A spoiler assembly is provided that is engageable to a UAV that defines a body, an outer surface and an inner surface. The spoiler assembly comprises a spoiler, translatably connected to the UAV inner surface adjacent a first portion of the spoiler aperture. The spoiler defines an upper surface and an outer surface, the upper surface being substantially the same size and shape as the spoiler aperture. A spoiler shroud is connected to the UAV inner surface and extends within the UAV body about at least a portion of the spoiler aperture. A spoiler activating mechanism is secured to the UAV inner surface and connected the spoiler lower surface. The mechanism is operative to translate the spoiler between a first position wherein the spoiler upper surface is substantially flush with the UAV outer surface, and second a position, wherein the spoiler upper surface is disposed substantially within the UAV body.
Abstract:
The invention relates to a lift system for an aircraft, comprising a main wing and a slat that can be adjusted in relation to said main wing, into various adjustable states, by means of an adjusting device thus forming a gap (5) between the rear side of the slat (1b) that faces the main wing and the main wing (2), the size of said gap being dependent on the adjusted state of the slat (1) in relation to the main wing (2). An air duct (11) comprising at least one inlet (20) and one outlet is formed inside the slat, said inlet (20) being arranged on the rear side (1b) facing the main wing, in order to influence the flow in the gap (5).
Abstract:
Le dispositif réduit la traînée, respectivement la perte de charge due au déplacement relatif entre un corps et un fluide ou d'un fluide dans un corps. Il comporte dans ou sur la surface du corps en contact avec le fluide, des moyens (2) servant à maîtriser le sens de rotation des tourbillons de fluide le long de la surface du corps réduisant ainsi les forces de frottement entre le fluide et le corps et donc la traînée, les contraintes auxquelles le corps est soumis ou la perte de charge du fluide.
Abstract:
The present invention features a fluid flow regulator that functions to influence fluid flow across a surface such as a rotating or rotary device, including propellers, impellers, turbines, rotors, fans, and other similar devices, structures and hulls or fuselages. The fluid flow regulator comprises a pressure recovery drop that induces a sudden drop in pressure at an optimal pressure recovery point on the surface, such that a sub-atmospheric barrier is created that serves as a cushion between the molecules in the fluid and the molecules at the airfoil's or hydrofoil's surface. More specifically, the present invention fluid flow regulator functions to significantly regulate the pressure gradients that exist along the surface of an airfoil or hydrofoil. Regulation of pressure gradients is accomplished by selectively reducing the pressure drag at various locations along the surface, as well as the pressure drag induced forward and aft of the airfoil or hydrofoil, via the pressure recovery drop. Reducing the pressure drag in turn increases pressure recovery or pressure recovery potential, which pressure recovery subsequently lowers the friction drag along the surface. By reducing or lowering friction drag, the potential for fluid separation is decreased, or in other words, the separation and separation potential of the fluid is significantly reduced.
Abstract:
Sound absorbers and airframe components comprising such sound absorbers are disclosed. In one embodiment, an airframe component comprises an aerodynamic surface (48) and a sound absorber (38). The sound absorber (38) comprises a perforated panel (40) having a front side exposed to an ambient environment outside of the airframe component and an opposite back side. The panel (40) comprises perforations extending through a thickness of the panel for permitting passage of sound waves therethrough. The sound absorber (38) also comprises a boundary surface spaced apart from the perforated panel. The boundary surface and the back side of the perforated panel (40) at least partially define a cavity in the airframe component for attenuating some of the sound waves entering the cavity via the perforations in the perforated panel (40).
Abstract:
A gust alleviating aircraft wing includes a gust alleviating wing portion on the wing. The wing portion can have a leading edge, a trailing edge, and a downwardly sloping upper surface therebetween. At least one air passageway can extend through the wing portion from the leading edge to a rear or downstream location on the downwardly sloping upper surface of the wing portion. At least one spoiler can be on the upper surface of the wing portion at the rear location for selectively movably covering and uncovering an exit location of the at least one passageway. Opening the at least one passageway is capable of diverting air flow through the at least one passageway and the wing portion for counteracting upward lift caused by a gust of wind.
Abstract:
A tile assembly (22) which, in use, is fitted to a base structure to form at least part of a fluid washed surface. The tile assembly comprises a housing (42) with at least one plenum (45) being provided within the housing (42). A wall (44) of the housing (42) is provided with a plurality of flow passages (46) which extend from the plenum side of the wall (44) to an outer surface (48) of the wall. Flow passage closures (50) are provided which are operable to open and close at least some of the flow passages (46).
Abstract:
Предложенное изобретение относится к области авиации, а также к иным областям техники, предусматривающим использование аэродинамических поверхностей, например к области ветроэнергетики, и позволит повысить аэродинамические качества летательного аппарата, или иного аналогичного объекта техники, при сохранении его общей надежности. Предложенный способ увеличения подъемной силы аэродинамической несущей поверхности, предусматривает формирование со стороны и вдоль передней (конфузорной) кромки несущей поверхности конфузора с использованием существующей аэродинамической несущей поверхности, преимущественно крыла летательного аппарата, и, по меньшей мере, одного дополнительного аэродинамического профиля. Аэродинамическая несущая поверхность, включает существующую аэродинамическую несущую поверхность и, по меньшей мере, один дополнительный аэродинамический профиль, расположенных, друг относительно друга, со стороны и вдоль передней кромки несущей поверхности с образованием конфузора.
Abstract:
Profilplattenabschnitt (120) zur Verwendung als Außenwandung eines Strömungskörpers, wobei der Profilplattenabschnitt (120) aufweist: zumindest abschnittsweise ein erstes Profilplattenpaneel (121), das für Fluid derart durchlässig ausgebildet ist, dass Fluid bereichsweise durch dieses hindurchströmen kann, ein sich entlang des ersten Profilplattenpaneels (121) erstreckendes zweites Profilplattenpaneel (122), eine Versteifungsvorrichtung (150) zur Abstützung des ersten Profilplattenpaneels (121) und des zweiten Profilplattenpaneels (122) aneinander, wobei die Versteifungsvorrichtung (150) derart ausgebildet ist, dass Fluid durch die Versteifungsvorrichtung (150) strömen kann, und/oder wobei das zweite Profilplattenpaneel (122) derart ausgebildet ist, dass Fluid der an dem ersten Profilplattenpaneel (121) anliegenden Strömung, das durch das erste Profilplattenpaneel (121) hindurch strömt, in der lokalen Profilplatten-Dickenrichtung (P-T) durch die Versteifungsvorrichtung (150) von dem ersten Profilplattenpaneel (121) zu dem zweiten Profilplattenpaneel (122) und bereichsweise durch dieses hindurch zu einer entgegen gesetzt zu der Strömungsseite gelegenen Innenseite strömen kann, sowie Verfahren zur Herstellung eines Profilplattenabschnitts und Strömungskörper- Bauteil mit einer Fluid-Absaugvorrichtung.
Abstract:
A fluid dynamic section (11) provides one or more fixed size escapelets (17, 19) through a foil body to reduce the induced and interference drag caused by trailing vortices and similar wake turbulence. The escapelets, which can be provided in both aerodynamic and hydrodynamic structures, such as wings, tail sections, rotary blades, guy wire frames, wing sails, and various underwater keels and wing keels. The escapelets transfer energy from an inlet (51) located in the high-pressure surface (25) of the foil or foil body to an outlet (53) located in the lower-pressure surface (27), allowing energy that would normally form a vortex at the tip of the foil to be redirected and dissipated in a beneficial way. As a result, drag is reduced and fuel economy is increased, while at the same time increasing the authority of ailerons and similar flight control surfaces, allowing aircraft that were not previously spin recovery rated to become spin recoverable.