MICRORESONATOR SYSTEM AND METHODS OF FABRICATING THE SAME
    91.
    发明申请
    MICRORESONATOR SYSTEM AND METHODS OF FABRICATING THE SAME 审中-公开
    微波炉系统及其制造方法

    公开(公告)号:WO2009017769A2

    公开(公告)日:2009-02-05

    申请号:PCT/US2008/009224

    申请日:2008-07-30

    Abstract: Various embodiments of the present invention are related to microresonator systems that can be used as a laser, a modulator, and a photodetector and to methods for fabricating the microresonator systems. In one embodiment, a microresonator system (100) comprises a substrate (106) having a top surface layer (104), at least one waveguide (114,116) embedded within the substrate (106), and a microdisk (102) having a top layer (118), an intermediate layer (122), a bottom layer (120), current isolation region (128), and a peripheral annular region (124,126). The bottom layer (120) of the microdisk (102) is in electrical communication with the top surface layer (104) of the substrate (106) and is positioned so that at least a portion of the peripheral annular region (124,126) is located above the at least one waveguide (114,116). The current isolation region (128) is configured to occupy at least a portion of a central region of the microdisk and has a relatively lower refractive index and relatively larger bandgap than the peripheral annular region.

    Abstract translation: 本发明的各种实施方案涉及可用作激光的微谐振器系统,调制器和光电检测器以及用于制造微谐振器系统的方法。 在一个实施例中,微谐振器系统(100)包括具有顶表面层(104),嵌入衬底(106)内的至少一个波导(114,116)的衬底(106)和具有顶层 (118),中间层(122),底层(120),电流隔离区域(128)和外围环形区域(124,126)。 微盘(102)的底层(120)与衬底(106)的顶表面层(104)电连通并且被定位成使周边环形区域(124,126)的至少一部分位于 所述至少一个波导(114,116)。 电流隔离区128被配置为占据微盘的中心区域的至少一部分,并且具有比周边环形区域相对更低的折射率和相对较大的带隙。

    SYSTEM AND METHODS FOR ROUTING OPTICAL SIGNALS
    92.
    发明申请
    SYSTEM AND METHODS FOR ROUTING OPTICAL SIGNALS 审中-公开
    用于路由光信号的系统和方法

    公开(公告)号:WO2009017768A1

    公开(公告)日:2009-02-05

    申请号:PCT/US2008/009223

    申请日:2008-07-30

    CPC classification number: G02B6/125 G02B6/43

    Abstract: A system and methods for routing optical signals are disclosed. The system includes a first large core hollow waveguide (205) having a reflective coating (213) covering an interior of the waveguide and configured to guide a substantially collimated multi-mode coherent light beam (208). A second large core hollow waveguide (208) with an interior reflective coating is coupled to the first waveguide with a coupling device (210). The coupling device is configured to redirect at least a portion of the coherent light beam from the first to the second waveguides through an optical path that is sufficiently short that a beam walk-off of the coherent light through the coupling device is less than half a width of the first large core hollow waveguide.

    Abstract translation: 公开了用于路由光信号的系统和方法。 该系统包括第一大芯空心波导(205),该第一大芯空心波导(205)具有覆盖波导内部的反射涂层(213),并被配置为引导基本准直的多模相干光束(208)。 具有内部反射涂层的第二大芯空心波导(208)通过耦合装置(210)耦合到第一波导。 耦合装置被配置为通过足够短的光路将来自第一至第二波导的相干光束的至少一部分重定向,使得通过耦合装置的相干光的光束偏移小于半 第一大芯空心波导的宽度。

    METHODS OF FORMING NANOSTRUCTURES ON METAL-SILICIDE CRYSTALLITES, AND RESULTING STRUCTURES AND DEVICES
    94.
    发明申请
    METHODS OF FORMING NANOSTRUCTURES ON METAL-SILICIDE CRYSTALLITES, AND RESULTING STRUCTURES AND DEVICES 审中-公开
    在金属硅化物晶体上形成纳米结构的方法和结构和器件

    公开(公告)号:WO2008106219A1

    公开(公告)日:2008-09-04

    申请号:PCT/US2008/002699

    申请日:2008-02-28

    Abstract: Various embodiments of the present invention are directed to methods of forming nanostructures on non-single crystal substrates, and resulting nanostructures and nanoscale functional devices. In one embodiment of the present invention, a method of forming nanostructures includes forming a multi-layer structure (106) comprising a metallic layer (100) and a silicon layer (104). The multi-layer structure (106) is subjected to a thermal process to form metal-silicide crystallites (110). The nanostructures (114) are grown on the metal-silicide crystallites (110). In another embodiment of the present invention, a structure includes a non-single- crystal substrate (102) and a layer (108) formed over the non-single-crystal substrate (102). The layer (108) includes metal-silicide crystallites (110). A number of nanostructures (114) may be formed on the metal-silicide crystallites (110). The disclosed structures may be used to form a number of different types of functional devices for use in electronics and/or optoelectronics devices.

    Abstract translation: 本发明的各种实施方案涉及在非单晶衬底上形成纳米结构的方法,以及所得的纳米结构和纳米级功能器件。 在本发明的一个实施例中,形成纳米结构的方法包括形成包括金属层(100)和硅层(104)的多层结构(106)。 对多层结构(106)进行热处理以形成金属硅化物微晶(110)。 在金属硅化物微晶(110)上生长纳米结构(114)。 在本发明的另一实施例中,结构包括非单晶衬底(102)和形成在非单晶衬底(102)上的层(108)。 层(108)包括金属硅化物微晶(110)。 可以在金属硅化物微晶(110)上形成许多纳米结构(114)。 所公开的结构可以用于形成许多用于电子和/或光电子器件的不同类型的功能器件。

    PHOTONIC SYSTEMS AND METHODS FOR ENCODING DATA IN CARRIER ELECTROMAGNETIC WAVES
    95.
    发明申请
    PHOTONIC SYSTEMS AND METHODS FOR ENCODING DATA IN CARRIER ELECTROMAGNETIC WAVES 审中-公开
    用于编码载波电磁波数据的光电系统和方法

    公开(公告)号:WO2008085819A1

    公开(公告)日:2008-07-17

    申请号:PCT/US2008/000026

    申请日:2008-01-03

    Abstract: Various embodiments of the present invention are related to photonic systems and methods that can be used to encode data in, and regulate transmission of, carrier electromagnetic waves. In one embodiment of the present invention, a photonic system (1000, 1500) comprises a first waveguide (1002) configured to transmit a number of electromagnetic waves. The photonic system (1000, 1500) includes a photonic crystal (1004, 1502) with a resonant cavity (1014, 1504) and is configured to selectively and evanescently couple one or more of the electromagnetic waves from the first waveguide (1002) into the reasonant cavity (1014, 1504). The photonic system (1000, 1500) also includes a second waveguide (1006) positioned to transmit and extract one or more electromagnetic waves from the reasonant cavity (1014, 1504) via evanescent coupling.

    Abstract translation: 本发明的各种实施例涉及可用于对载波电磁波的数据进行编码和调节传输的光子系统和方法。 在本发明的一个实施例中,光子系统(1000,1500)包括被配置为传送多个电磁波的第一波导(1002)。 光子系统(1000,1500)包括具有谐振腔(1014,1504)的光子晶体(1004,1502),并且被配置为选择性地和湮灭地将来自第一波导(1002)的一个或多个电磁波耦合到 推理腔(1014,1504)。 光子系统(1000,1500)还包括第二波导(1006),其被定位成经由ev逝耦合传输和提取来自推理器腔(1014,1504)的一个或多个电磁波。

    NANOCHANNEL APPARATUS AND METHOD OF FABRICATING
    96.
    发明申请
    NANOCHANNEL APPARATUS AND METHOD OF FABRICATING 审中-公开
    NANOCHANNEL装置和制作方法

    公开(公告)号:WO2008051238A2

    公开(公告)日:2008-05-02

    申请号:PCT/US2006/044665

    申请日:2006-11-17

    CPC classification number: B81C1/00071 B01L3/5027 B01L2300/0896

    Abstract: A nanochannel apparatus 10, 20, 30, 40, 50, 60 and method 200, 400 of fabrication provide an array of nanochannels 16, 206, 36, 406 with distal open or exposed ends 51, 53, 61, 63 formed in situ through a permanent support 12, 205, 32, 405. A nanofluidic system 500, 600 includes the nanochannel apparatus, a fluidic interface 501, 503, 601, 603, and a component 510, 512, 610, 604, 606 interfaced to the nanochannel apparatus. The method 200, 400 includes encasing 230, 430 an array of nanowires 203, 403 in a support 204, 205, 404, 405, and forming the array of nanochannels in situ in locations of the nanowires, such that distal ends of the nanochannels are exposed.

    Abstract translation: 纳米通道装置10,20,30,40,50,60和制造方法200,400提供纳米通道16,206,36,406的阵列,其具有远端打开或暴露的末端51,53,61,63,其原位通过 永久性支撑件12,205,32,405。纳米流体系统500,600包括纳米通道装置,流体界面501,503,601,603以及与纳米通道装置接口的部件510,512,610,604,606 。 方法200,400包括在支撑件204,204,404,405中包围230,430纳米线203,403的阵列,并且在纳米线的位置处原位形成纳米通道阵列,使得纳米通道的远端为 裸露。

    COMPOSITE MATERIAL WITH CHIRPED RESONANT CELLS
    98.
    发明申请
    COMPOSITE MATERIAL WITH CHIRPED RESONANT CELLS 审中-公开
    复合材料与CHIRPED共振细胞

    公开(公告)号:WO2008045536A2

    公开(公告)日:2008-04-17

    申请号:PCT/US2007/021809

    申请日:2007-10-12

    CPC classification number: H01Q13/28 H01Q15/0086 H01Q15/08

    Abstract: A composite material (102) comprising a dielectric material and a plurality of non-overlapping local resonant cell groups (106) disposed across the dielectric material is described. Each local resonant cell group (106) comprises a plurality of resonant cells (108) that are small relative to a first wavelength (λc) of electromagnetic radiation that is incident upon the composite material (102). Each local resonant cell group (106) has a spatial extent that is not larger than an order of the first wavelength. For each of the local resonant cell groups, the resonant cells (108) therein are chirped with respect to at least one geometric feature thereof such that a plurality of different subsets of the resonant cells resonate for a respective plurality of wavelengths in a spectral neighborhood (203) of the first wavelength (λc). The composite material (102) exhibits at least one of a negative effective permeability and a negative effective permittivity for each of the plurality of wavelengths in that spectral neighborhood (203).

    Abstract translation: 描述了一种复合材料(102),其包括介电材料和跨越介电材料设置的多个非重叠的局部谐振单元组(106)。 每个本地谐振单元组(106)包括相对于入射在复合材料(102)上的电磁辐射的第一波长(λc)小的多个谐振单元(108)。 每个局部谐振单元组(106)具有不大于第一波长的阶数的空间范围。 对于每个本地谐振单元组,其中的谐振单元(108)相对于其至少一个几何特征被啁啾,使得谐振单元的多个不同子集对于频谱邻域中的相应多个波长共振( 203)的第一波长(λc)。 所述复合材料(102)对所述光谱邻域(203)中的所述多个波长中的每一个呈现负的有效磁导率和负的有效介电常数中的至少一个。

    WAVELENGTH-TUNABLE EXCITATION RADIATION AMPLIFYING STRUCTURE AND METHOD
    99.
    发明申请
    WAVELENGTH-TUNABLE EXCITATION RADIATION AMPLIFYING STRUCTURE AND METHOD 审中-公开
    波长可调的激励辐射放大结构和方法

    公开(公告)号:WO2007001367A3

    公开(公告)日:2007-03-01

    申请号:PCT/US2005032801

    申请日:2005-09-13

    CPC classification number: G01N21/658 G01J3/26

    Abstract: Wavelenght-tunable radiation amplifying structures (100, 200, 300) for Raman spectroscopy are disclosed that include resonant cavities (110, 210, 310) having Raman signal-enhancing structures (130, 230, 330) disposed therein. Also disclosed are systems (500, 600) that include the amplifying structures (100, 200, 300), and methods of performing spectroscopic analysis using the structures (100, 200, 300) and systems (500, 600).

    Abstract translation: 公开了用于拉曼光谱的波长可调辐射放大结构(100,200,300),其包括其中设置有拉曼信号增强结构(130,230,330)的谐振腔(110,210,310)。 还公开了包括放大结构(100,200,300)的系统(500,600)以及使用结构(100,200,300)和系统(500,600)执行光谱分析的方法。

    NANOWIRE DEVICE WITH (111) VERTICAL SIDEWALLS AND METHOD OF FABRICATION
    100.
    发明申请
    NANOWIRE DEVICE WITH (111) VERTICAL SIDEWALLS AND METHOD OF FABRICATION 审中-公开
    具有(111)垂直边的纳米器件和制造方法

    公开(公告)号:WO2006083310A3

    公开(公告)日:2006-10-05

    申请号:PCT/US2005022699

    申请日:2005-06-28

    Abstract: A nano-scale device 10, 20, 30, 60 and method 40, 50, 70 of fabrication provide a nanowire 14, 24, 34, 64 having (111) vertical sidewalls 14a, 22e, 34a, 64a. The nano-scale device includes a semiconductor-on-insulator substrate 12, 22, 32, 62 polished in a [110] direction, the nanowire, and an electrical contact 26, 35 at opposite ends of the nanowire 24, 34. The method 40, 50, 70 includes wet etching 42, 52, 72 a semiconductor layer 12a, 22a, 32a. 62a of the semiconductor-on-insulator substrate to form 44, 54 the nanowire 24, 34 extending between a pair of islands 22f, 32f in the semiconductor layer 22a, 32a. The method 50 further includes depositing 56 an electrically conductive material on the pair of islands to form the electrical contacts 26, 36. A nano-pn diode 60 includes the nanowire 64 as a first nano-electrode, a pn-junction 66 verically stacked on the nanowire 64, and a second nano-electrode 68 on a (110) horizontal planar end of the pn-junction. The nano-pn diode 60 may be fabricated in array of the diodes on the semiconductor-on-insulator substrate 62.

    Abstract translation: 具有(111)垂直侧壁14a,22e,34a,64a的纳米级器件10,20,30,60和制造方法40,50,70制成纳米线14,24,34,64。 纳米级器件包括在[110]方向上抛光的绝缘体上半导体衬底12,22,32,62,纳米线和在纳米线24,34的相对端的电接触26,35。 40,50,70包括湿蚀刻42,52,72半导体层12a,22a,32a。 62a,以形成44,54在半导体层22a,32a中的一对岛状物22f,32f之间延伸的纳米线24,34。 方法50还包括在该对岛上沉积56导电材料以形成电接触26,36。纳米pn二极管60包括作为第一纳米电极的纳米线64, 纳米线64和在pn结的(110)水平平面端上的第二纳米电极68。 可以在绝缘体上半导体衬底62上的二极管的阵列中制造纳米pn二极管60。

Patent Agency Ranking