Abstract:
La présente invention concerne un ensemble comportant un laser à cascade quantique (1), et une embase (2) associée comprenant une matrice (21) thermiquement conductrice et électriquement isolante structurée de manière à épouser la forme du guide d'onde du laser et la forme du substrat isolant (11) pour que : - le contact électrique supérieur (13) du laser soit en contact avec le contact électrique central (23) de l'embase sur la longueur de la matrice, - le contact électrique latéral (14, 15) du laser soit en contact avec le contact électrique latéral (24, 25) de l'embase.
Abstract:
Ein Verfahren zum Herstellen eines elektronischen Bauelements umfasst Schritte zum Bereitstellen einer Oberfläche mit einem ersten Bereich (110) und einem an den ersten Bereich angrenzenden zweiten Bereich (120), zum Anordnen einer Opferschicht (200) über dem ersten Bereich der Oberfläche, zum Anordnen einer Passivierungsschicht (300) über der Opferschicht und dem zweiten Bereich der Oberfläche, zum Anlegen einer Öffnung (410) in der Passivierungsschicht über den ersten Bereich der Oberfläche und zum Entfernen der Opferschicht (200). Dazu kann noch eine Fotolackschicht (400) verwendet werden. Nach Maskieren und Ätzen der Opferschicht kann die verbliebene Fotolackschicht (400) und der Überstand der Passivierungsschicht (300) mechanisch über eine so gebildete Sollbruchstelle entfernt werden.
Abstract:
An emitting device including an active region having quantum wells alternating with barriers of varying compositions is provided. The barriers can be composed of a group Ill-nitride based material, in which a molar fraction of one or more of the group III elements in two barriers adjacent to a single quantum well differ by at least one percent. Two barriers adjacent to a single quantum well can have barrier heights differing by at least one percent.
Abstract:
The invention provides a quantum cascade laser device (100, 101) in a semiconductor substrate (11), which quantum cascade laser device (100, 101) comprises a plurality of semiconductor layers (14) having a side surface (13) that exposes a side of each semiconductor layer. The quantum cascade laser device (100,101) emits a light beam (L) in a direction substantially perpendicular to the side surface (13) of the quantum cascade laser device (100,101), which side surface (13) is essentially parallel to a top surface of the semiconductor substrate (11). The power loss of the quantum cascade laser device (100,101) is reduced considerably, because the light beam (L) is not diffracted or reflected before it is emitted from the quantum cascade laser device (100,101), which improves the power efficiency of the quantum cascade laser device (100,101). The invention further provides a method of manufacturing such a quantum cascade laser device (100,101).
Abstract:
A semiconductor laser device with a first side and a second side, comprising (a) an active region, (b) a P layer, wherein the P layer contains a first contact area, (c) an N layer, wherein said N layer contains a second contact area, wherein the contact area of first contact area of the P layer and the second contact layer of the N layer reside on the first side of the laser device.
Abstract:
A pump laser capable of delivering at least a specified amount of output power is described. The pump laser has an array of N semiconductor lasers each having a first wavelength and an individual available output power (P) such that the product of N times p is equal to or greater than the specified amount of output power. The pump laser also has a coupler configured to couple light emitted by the individual lasers in the array to an individual optical fiber.
Abstract:
A method of growing a nitride semiconductor crystal having very few crystal defects and capable of being used as a substrate, comprising the step of forming a first selective growth mask equipped with a plurality of first windows for selectively exposing the surface of a support on the support having a main plane and including different kinds of substrates made of materials different from those of a nitride semiconductor, and the step of growing the nitride semiconductor, by using a gaseous Group III element source and a gaseous nitrogen source, until portions of the nitride semiconductor crystal growing in adjacent windows from the surface of the support exposed from the window join with one another on the upper surface of the selective growth mask.
Abstract:
A semiconductor laser device, a lower light-confining layer (31), an active layer (3), and an upper light-confining layer (34) are provided on a semiconductor substrate (1) in this order. Formed are an electron injecting path for injecting electrons into the active layer (3) via the upper light-confining layer (n-type electrode (10) ← upper light-confining layer (34) ← active layer (3)), and a hole injecting path for injecting holes into the active layer (3) via no light-confining layer (p-type electrode (6) ← p-type InP layer (5) ← active layer (3)). Therefore, the modulation and response characteristics of the device are improved in high-speed operation.