MID-INFRARED DETECTOR USING A HEAVILY DOPED BACKPLANE TO THE DETECTOR STRUCTURE

    公开(公告)号:WO2019040486A1

    公开(公告)日:2019-02-28

    申请号:PCT/US2018/047318

    申请日:2018-08-21

    Abstract: A mid-infrared detector that uses a heavily doped material (e.g., indium arsenide) as a backplane to the detector structure to improve detector performance and fabrication cost. The infrared detector includes a substrate and a backplane of heavily doped material consisting of two or more of the following materials: indium, gallium, arsenic and antimony. The backplane resides directly on the substrate. The infrared detector further includes a photodetector (e.g., type-I or type-II strained layer superlattice (SLS) nBn photodetector, type-I or type-II SLS pn junction photodetector, a quantum-dot infrared photodetector, a quantum well infrared photodetector, a homogeneous material pn junction photodetector) residing directly on the backplane. Additionally, the infrared detector may include a metal structure residing directly on the photodetector. In this manner, the absorption of electromagnetic energy in the photodetector is enhanced.

    SEMICONDUCTOR DEVICES COMPRISING A PINNED PHOTODIODE STRUCTURE
    2.
    发明申请
    SEMICONDUCTOR DEVICES COMPRISING A PINNED PHOTODIODE STRUCTURE 审中-公开
    半导体器件包含一个PINNED光电二极管结构

    公开(公告)号:WO2017123159A1

    公开(公告)日:2017-07-20

    申请号:PCT/SG2017/050019

    申请日:2017-01-16

    CPC classification number: H01L31/101

    Abstract: A semiconductor device operable to demodulate incident modulated electromagnetic radiation, the semiconductor device comprising: a pinned photodiode structure including a substrate of a first type, an implant layer of a second type disposed within the substrate, first and second auxiliary implant layers of the second type disposed within the substrate and each disposed adjacent to the implant layer of the second type, an implant layer of the first type disposed within the implant layer of the second type and extending into the first and second auxiliary implant layers of the second type, an insulator disposed on a surface of the substrate, and a photo-detection region; first and second transfer gates disposed on a surface of the insulator, the transfer gates being operable to generate a field within the substrate; and first and second floating diffusion implant layers of the second type disposed within the substrate.

    Abstract translation: 半导体器件,其可操作以解调入射调制的电磁辐射,所述半导体器件包括:钉扎光电二极管结构,其包括第一类型的衬底,布置在所述衬底内的第二类型的注入层,第一和第二类型的注入层, 第二类型的第二辅助注入层设置在衬底内并且每个设置为与第二类型的注入层相邻;第一类型的注入层,设置在第二类型的注入层内并延伸到第一和第二辅助注入中 第二类型的层,设置在基板表面上的绝缘体,以及光检测区域; 设置在所述绝缘体的表面上的第一传输门和第二传输门,所述传输门可操作以在所述衬底内产生场; 以及设置在衬底内的第二类型的第一和第二浮动扩散注入层。

    MICROSTRUCTURE ENHANCED ABSORPTION PHOTOSENSITIVE DEVICES
    3.
    发明申请
    MICROSTRUCTURE ENHANCED ABSORPTION PHOTOSENSITIVE DEVICES 审中-公开
    显微结构增强吸收式光敏器件

    公开(公告)号:WO2017112747A1

    公开(公告)日:2017-06-29

    申请号:PCT/US2016/067977

    申请日:2016-12-21

    Abstract: Techniques for enhancing the quantum efficiency (QE) in photodiodes and avalanche photodiodes with the use of microstructures are described. The microstructures, such as holes, effectively increase the absorption of the photons. QE can be enhanced using heterojunction PIN structures which can result in less light absorbed in the P and/or N regions and more light absorbed in the I region. Various alloys of GeSi can be used for I and/or P regions. The microstructured holes can be funnel shaped, aperiodic, non-circular, textured and/or slanted which can further increase QE.

    Abstract translation: 描述了利用微结构来提高光电二极管和雪崩光电二极管中的量子效率(QE)的技术。 微结构,如空穴,有效地增加了光子的吸收。 可以使用异质结PIN结构增强QE,其可以导致在P和/或N区域中吸收较少的光以及在I区中吸收更多的光。 GeSi的各种合金可以用于I和/或P区域。 微结构孔可以是漏斗形的,非周期性的,非圆形的,纹理化的和/或倾斜的,这可以进一步提高QE。

    光検出器
    6.
    发明申请
    光検出器 审中-公开
    光电探测器

    公开(公告)号:WO2013172269A1

    公开(公告)日:2013-11-21

    申请号:PCT/JP2013/063182

    申请日:2013-05-10

    Abstract: この光検出器1Aは、第1の領域、及び所定の方向に垂直な面に沿って第1の領域に対し周期的に配列された第2の領域を含む構造体を有し、所定の方向に沿って光が入射したときに所定の方向の電界成分を生じさせる光学素子10と、光学素子10に対し所定の方向における一方の側とは反対側の他方の側に配置され、光学素子10により生じさせられた所定の方向の電界成分によって電流を生じる量子カスケード構造を有する半導体積層体4と、を備え、量子カスケード構造は、第1の量子上位準位、及び当該第1の量子上位準位よりも低い第2の量子上位準位を有するアクティブ領域4bと、アクティブ領域4bで励起された電子を輸送するインジェクタ領域4cとを含む。

    Abstract translation: 该光检测器(1A)设置有:光学元件(10),其具有包括第一区域和相对于第一区域周期性地布置的第二区域的结构,沿着垂直表面沿规定方向,并且产生电 当光沿规定方向入射时,在规定方向上的场分量; 以及在规定方向上配置在所述光学元件(10)的另一侧的半导体层叠体(4),所述另一侧与所述光学元件(10)的所述规定方向的一侧相反,具有 使用由光学元件(10)产生的规定方向的电场分量来产生电流的量子级联结构。 量子级联结构包括:具有第一量子上电平的有源区(4b)和低于第一量子上电平的第二量子上电平; 以及用于传输由有源区(4b)激发的电子的注入区(4c)。

    RESONANT DIODE HAVING SPIN POLARIZATION FOR OPTOELECTRONIC CONVERSION
    8.
    发明申请
    RESONANT DIODE HAVING SPIN POLARIZATION FOR OPTOELECTRONIC CONVERSION 审中-公开
    具有用于光电转换的旋转偏振的共振二极管

    公开(公告)号:WO2011141304A3

    公开(公告)日:2012-08-30

    申请号:PCT/EP2011056909

    申请日:2011-05-02

    CPC classification number: H01L31/101 H01L31/022408 H01L31/035209

    Abstract: The invention relates to a resonant diode having a ferromagnetic (FM) tunnel contact for generating an electric current, the amplitude of which is determined by the polarization state of the absorbed light. The invention is essentially characterized by the presence of a stack of semi-conductor layers (B1, W, B2) thus defining a carrier confinement area. The operation principle comprises generating polarized carriers, electron-hole pairs in dual-barrier quantum semi-conductor wells or boxes by the resonant absorption of a light wave having circular or elliptic polarization. The invention can be used as a basic element or in the form of a two-dimensional array as a magnetic memory element, a light polarization detector, or a magnetic field sensor.

    Abstract translation: 本发明涉及一种具有铁磁(FM)隧道接触的谐振二极管,用于产生电流,其振幅由吸收的光的偏振状态决定。 本发明的主要特征在于存在一层半导体层(B1,W,B2),从而限定载流子限制区域。 操作原理包括通过具有圆形或椭圆偏振光波的共振吸收产生双重势垒量子半导体阱或盒中的极化载流子,电子 - 空穴对。 本发明可以作为基本元件或二维阵列的形式用作磁存储元件,光偏振检测器或磁场传感器。

    A DOUBLE-COLLECTOR UNI-TRAVELLING-CARRIER PHOTODIODE
    9.
    发明申请
    A DOUBLE-COLLECTOR UNI-TRAVELLING-CARRIER PHOTODIODE 审中-公开
    双重收集器非旅行车载光电二极管

    公开(公告)号:WO2012080061A1

    公开(公告)日:2012-06-21

    申请号:PCT/EP2011/072096

    申请日:2011-12-07

    CPC classification number: H01L31/035272 H01L31/101

    Abstract: A uni-travelling carrier (UTC) photodiode comprising an absorption region (22) of p-type doped material. The photodiode further comprises a first collector layer (23) and second collector layer (24) wherein the absorption region (22) is located between the first collector layer (23) and the second collector layer (24) and a contact layer (21) made of p-type material is located within the absorption region (22). By this double collector UTC structure the responsivity bandwidth trade-off is improved since the current caused by the movement of the electrons (n1,n2) generated as a result of light absorption in the absorption region (22) is directed towards two separate collectors (23, 24).

    Abstract translation: 包括p型掺杂材料的吸收区域(22)的单行载体(UTC)光电二极管。 光电二极管还包括第一集电极层(23)和第二集电极层(24),其中吸收区域(22)位于第一集电极层(23)和第二集电极层(24)之间,接触层(21) 由p型材料制成,位于吸收区域(22)内。 通过这种双收集器UTC结构,响应度带宽权衡得到改善,因为由吸收区域(22)中的光吸收产生的电子(n1,n2)的移动引起的电流被引导到两个分开的收集器 23,24)。

    SUPERLATTICE QUANTUM WELL INFRARED DETECTOR
    10.
    发明申请
    SUPERLATTICE QUANTUM WELL INFRARED DETECTOR 审中-公开
    超晶格量子阱红外探测器

    公开(公告)号:WO2012051060A2

    公开(公告)日:2012-04-19

    申请号:PCT/US2011/055220

    申请日:2011-10-07

    Abstract: In at least one embodiment, an infrared (IR) sensor comprising a thermopile is provided. The thermopile comprises a substrate and an absorber. The absorber is positioned above the substrate and a gap is formed between the absorber and the substrate. The absorber receives IR from a scene and generates an electrical output indicative of a temperature of the scene. The absorber is formed of a super lattice quantum well structure such that the absorber is thermally isolated from the substrate. In another embodiment, a method for forming an infrared (IR) detector is provided. The method comprises forming a substrate and forming an absorber with a plurality of alternating first and second layers with a super lattice quantum well structure. The method further comprises positioning the absorber about the substrate such that a gap is formed to cause the absorber to be suspended about the substrate.

    Abstract translation: 在至少一个实施例中,提供了一种包括热电堆的红外(IR)传感器。 热电堆包括衬底和吸收器。 吸收体位于基底上方并且在吸收体和基底之间形成间隙。 吸收器接收来自场景的IR并产生指示场景温度的电输出。 吸收体由超晶格量子阱结构形成,使得吸收体与衬底热隔离。 在另一个实施例中,提供了一种用于形成红外(IR)检测器的方法。 该方法包括形成衬底并且用具有超晶格量子阱结构的多个交替的第一和第二层形成吸收体。 该方法还包括将吸收体定位在衬底周围,使得形成间隙以使吸收体悬挂在衬底周围。

Patent Agency Ranking