Abstract:
본 발명에 따른 복합 건조 시스템은, 마이크로 웨이브 발생기를 냉각시킨 냉각수의 열을 축열조에 축열한 후, 히트 펌프에 공급하여 방열함으로써, 피건조물의 투입, 배출 및 교체 등을 위해 마이크로 웨이브 발생기의 작동이 중지되는 경우에도 상기 축열조에 저장된 열을 증발기의 열원으로 계속해서 공급할 수 있으므로, 안정적인 열원 확보가 가능하다. 또한, 축열조에 저장된 고온의 냉각수 중 일부를 증발기의 표면에 분사시켜, 증발기의 열교환 효율을 향상시킬 수 있다.
Abstract:
An apparatus and method for microwave vacuum-drying of organic materials such as food products. The dehydration apparatus (10) has a vacuum chamber (12) with a loading module (14) at one end and a discharge module (22) at the other. The vacuum chamber has access doors (80) spaced between the input end (16) and the discharge end (24) which provide operator and maintenance access. Microwave generators (86) are mounted on each access door and arranged to radiate through a microwave chamber and microwave-transparent window on the access door into the vacuum chamber. The waveguides on a respective access door are oriented to minimize microwave interference between the magnetrons on that door. A conveyor (60) in the vacuum chamber moves the organic material (96) on trays (18) through the vacuum chamber.
Abstract:
This invention describes large microwave/radiofrequency (RF/MW) heating equipments scalable to any size heated with RF/MW heating systems employing multiple magnetrons independent of its wave characteristics arranged in a particular fashion to avoid wave interferences and concentrated heating without turn tables. The invention also explains the various embodiments of the invention like solvent dehydration and solvent recovery using the above mentioned invention.
Abstract:
A method and apparatus for maintaining or elevating the temperature of one or more parts in an automated liquid painting or powder coating system, in an area that is required to be ignition- source-free, through the use of a heat-retaining, ignition-source-free tunnel, i.e. an ignition-source-free heat tunnel.
Abstract:
Methods of reducing transient temperature variations in a microwave drying process for drying partially dried ceramic logs are disclosed. The methods include sending the logs through an output microwave dryer having multiple applicators, each applicator being capable of generating an adjustable amount of microwave power. A transient drying model is employed based on microwave-drying process parameters to determine a predicted log exit temperature at the output end of the output microwave dryer. The exit temperature of each log is measured. The transient drying model, which is used to control the amount of microwave power applied, is adjusted based on a difference between the predicted and measured log exit temperatures.
Abstract:
A method for making a lithium-ion cell includes depositing an electrode material as a coating on a substrate of the lithium-ion cell, irradiating the deposited electrode material with microwave radiation of varying frequency, wetting the irradiated electrode material with a non-aqueous electrolyte solution, and sealing the wetted electrode material in an air-tight enclosure.
Abstract:
Systems and methods for efficient microwave drying of extruded honeycomb structures are disclosed. The methods include conveying first and second sets of honeycomb structures in opposite directions through multiple applicator cavities. Each honeycomb structure has a moisture content M C , and the honeycomb structures within each cavity define an average moisture content M CA between 40% and 60% therein. The methods include irradiating the first and second sets of honeycomb structures within the cavities with microwave radiation having an amount of input microwave power P l that results in an amount of reflected microwave power P R from the honeycomb structures, where P R I . This allows for a relatively high microwave power to be maintained in each cavity. Batch microwave drying methods are also disclosed.
Abstract:
An apparatus (20) for dehydrating organic material in batches has a processing unit (22) having a microwave-vacuum chamber (34), an input module (28) and an output module (30), with a conveyor (54) for moving the material through the chamber on a microwave-transparent window. A material reservoir (68) is arranged to receive the material exiting the output module. A conveyor (78) external to the vacuum chamber conveys material that exits the reservoir to the input module. The vacuum chamber (34), reservoir (68) and external conveyor (78) are in fluid communication to operate at a common, reduced pressure. The organic material passes through the vacuum chamber multiple times to equilibrate and dry to the desired degree.
Abstract:
A microwave heater capable of heating a bundle of wood and equipped with an optimized system for introducing microwave energy into the heater is provided. Also provided is an enhanced system for launching and dispersing within the heater. The system uses one or more TMab microwave launchers to emit microwave energy in the interior of the microwave heater in a TMab mode, where a is 0 and b is an integer between 1 and 5. The TMab launchers can be configured to emit microwave energy through an open outlet that faces generally parallel to the nearest wall of the heater. In certain situations, it can be advantageous to use at least two TMab microwave launchers having open outlets that face towards one another. In certain situations, it can be advantageous to use at least two TMab microwave launchers located on generally opposite sides of the microwave heater. In certain situations, the system can also include one or more moving reflectors for dispersing microwave energy emitted from the TMab microwave launchers.
Abstract:
A microwave heater capable of heating a bundle of wood and equipped with an optimized system for launching and/or dispersing microwave energy. The microwave launching system can include one or more split microwave launchers at least partly disposed in the interior of the heater. The microwave dispersing system can include one or more moving reflectors for rastering microwave energy emitted from the split launchers.