Abstract:
Ein schwefelfreies und emissionsarmes Elastomerblend soll bereitgestellt werden, das die Eigenschaften von verschiedenen Kautschuken besitzt, und dessen mechanische Eigenschaften, insbesondere in Bezug auf Druckverformungsrest (DVR), Bruchdehnung, Zugfestigkeit und/oder Gasdurchlässigkeit (Permeation) gegenüber den Einzelcompounds verbessert sind, und das eine verbesserte Temperatur- und Medienbeständigkeit aufweist. Dazu umfasst das Elastomerblend einen Kautschuk (A) mit mindestens zwei über Hydrosilylierung vernetzbaren funktionellen Gruppen, mindestens einen anderen Kautschuk (B) mit mindestens zwei über Hydrosilylierung vernetzbaren funktionellen Gruppen, wobei sich der Kautschuk (B) vom Kautschuk (A) chemisch unterscheidet, als Vernetzer (C) ein Hydrosiloxan oder Hydrosiloxanderivat oder ein Gemisch aus mehreren Hydrosiloxanen oder -derivaten, die im Mittel mindestens zwei SiH-Gruppen pro Molekül aufweisen, ein Hydrosilylierungs-Katalysatorsystem (D) und mindestens einen Füllstoff (E).
Abstract:
An electrolyte membrane-electrode assembly comprising an electrolyte membrane, an anode side electrode including an anode side catalyst layer arranged on one side of the electrolyte membrane and an anode side gas diffusion layer so formed on the anode side catalyst layer as to extend beyond the end face of the anode side catalyst layer in the surface direction, an anode side adhesive layer arranged at least partially on the periphery of the anode side catalyst layer, and an anode side gasket layer arranged in contact with the anode side adhesive layer. In this electrolyte membrane-electrode assembly, the inner end of the anode side adhesive layer in the surface direction is located on the inside of the inner end of the anode side gasket layer in the surface direction, and a part of the anode side adhesive layer overlaps a part of the anode side gas diffusion layer relative to the thickness direction.
Abstract:
A seal located between ceramic electrolyte or mixed electrolyte cells, and ceramic components of similar or dissimilar compositions, ceramic components and metal components, or any other materials for use in electrochemical gas separation devices, fuel cells and other thermal electrochemical power generation devices, high temperature heat exchangers, thermal management devices or other applications requiring joining or gas-tight bonding where said seal is comprised of materials derived from pyrolysis of silicocarbon polymers and fillers of active and/or passive fillers.
Abstract translation:位于陶瓷电解质或混合电解质电池之间的密封件,以及具有相似或不同组成的陶瓷组件,陶瓷组件和金属组件,或用于电化学气体分离装置,燃料电池和其他材料的其它材料 热电化学发电装置,高温热交换器,热管理装置或需要连接或气密结合的其它应用,其中所述密封件由源自硅碳聚合物的热解和活性和/或无源填料的填料的材料组成。 p >
Abstract:
A primer (16) for forming a resin frame (17) is formed on an outer end portion (16p) of a separator (1) of a fuel cell. An electrodeposition coating device (2) includes an upper frame (21) and a lower frame (22), and covers only the outer end portion (16p) of the substrate (11) with a center portion (12) of the substrate (11) left uncovered. When the substrate (11) is sandwiched between the upper frame (21) and the lower frame (22) of the electrodeposition coating device (2), an annular electrodeposition chamber (31) is formed with the outer end portion (16p) of the substrate (11) located in the electrodeposition chamber (31). Then, the electrodeposition chamber (31) is filled with an electrodeposition coating solution (32), and electrodeposition coating is performed. Then, cleaning is performed by using purified water, and drying is performed by using hightemperature air.
Abstract:
The present invention provides fabrication methods for membrane electrode assemblies. The fabrication of a gas diffusion unit for an electrode with a hot melt adhesive layer for an membrane electrode assembly include the steps of: dividing a substrate into an active region and a sealing region; fabricating a gas diffusion layer on said active region; placing a mold for said sealing region on said substrate; pouring a resin material onto said sealing region through the aperture of the mold; volatizing said resin material; hot-pressing to form a gas diffusion unit; and fabricating one or more hot melt adhesive layer at said sealing region. The membrane electrode assembly is assembled by hot-pressing the gas diffusion unit for the positive and negative electrodes, the hot-melt adhesive layers for the electrodes, and the catalyst coated proton membrane. These fabrication methods are reduces the use and costs of materials, reduces the potential for damage to the proton membrane, are efficient, and fabricates membrane electrode assemblies that have a stable structure.
Abstract:
Fabricating roll-good fuel cell material involves laminating first and second bonding material webs having spaced apart windows to first and second surfaces of a fuel cell membrane web. First and second active regions of the membrane web are positioned within the respective bonding material windows. Third and fourth gasket material webs having spaced apart windows are respectively laminated to the bonding material on the first and second membrane web surfaces. The bonding material windows align with the respective gasket material windows so that at least some of the bonding material extends within the respective gasket material windows. Fluid transport layer (FTL) material portions cut from fifth and sixth FTL material webs are laminated to the respective first and second active regions. The FTL material portions are positioned within respective gasket material windows and contact the bonding material extending within the respective gasket material windows.